PaddleOCR/ppocr/utils/save_load.py

165 lines
6.1 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
2020-10-13 17:13:33 +08:00
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
2020-05-10 16:26:57 +08:00
#
# http://www.apache.org/licenses/LICENSE-2.0
#
2020-10-13 17:13:33 +08:00
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2020-05-10 16:26:57 +08:00
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import errno
import os
2020-10-13 17:13:33 +08:00
import pickle
import six
2020-05-10 16:26:57 +08:00
2020-10-13 17:13:33 +08:00
import paddle
2020-05-10 16:26:57 +08:00
2021-06-05 14:52:45 +08:00
from ppocr.utils.logging import get_logger
__all__ = ['init_model', 'save_model', 'load_dygraph_params']
2020-05-10 16:26:57 +08:00
2020-10-13 17:13:33 +08:00
def _mkdir_if_not_exist(path, logger):
2020-05-10 16:26:57 +08:00
"""
mkdir if not exists, ignore the exception when multiprocess mkdir together
"""
if not os.path.exists(path):
try:
os.makedirs(path)
except OSError as e:
if e.errno == errno.EEXIST and os.path.isdir(path):
logger.warning(
'be happy if some process has already created {}'.format(
path))
else:
raise OSError('Failed to mkdir {}'.format(path))
2021-06-05 14:52:45 +08:00
def init_model(config, model, optimizer=None, lr_scheduler=None):
2020-05-10 16:26:57 +08:00
"""
load model from checkpoint or pretrained_model
"""
2021-06-05 14:52:45 +08:00
logger = get_logger()
global_config = config['Global']
checkpoints = global_config.get('checkpoints')
pretrained_model = global_config.get('pretrained_model')
2020-10-13 17:13:33 +08:00
best_model_dict = {}
2020-05-10 16:26:57 +08:00
if checkpoints:
2020-10-13 17:13:33 +08:00
assert os.path.exists(checkpoints + ".pdparams"), \
"Given dir {}.pdparams not exist.".format(checkpoints)
assert os.path.exists(checkpoints + ".pdopt"), \
"Given dir {}.pdopt not exist.".format(checkpoints)
2020-11-09 13:27:31 +08:00
para_dict = paddle.load(checkpoints + '.pdparams')
opti_dict = paddle.load(checkpoints + '.pdopt')
2020-11-09 18:20:03 +08:00
model.set_state_dict(para_dict)
2020-10-13 17:13:33 +08:00
if optimizer is not None:
optimizer.set_state_dict(opti_dict)
if os.path.exists(checkpoints + '.states'):
with open(checkpoints + '.states', 'rb') as f:
states_dict = pickle.load(f) if six.PY2 else pickle.load(
f, encoding='latin1')
best_model_dict = states_dict.get('best_model_dict', {})
if 'epoch' in states_dict:
best_model_dict['start_epoch'] = states_dict['epoch'] + 1
logger.info("resume from {}".format(checkpoints))
elif pretrained_model:
2020-11-04 20:43:27 +08:00
if not isinstance(pretrained_model, list):
pretrained_model = [pretrained_model]
2021-06-03 13:30:43 +08:00
for pretrained in pretrained_model:
2021-06-05 14:52:45 +08:00
if not (os.path.isdir(pretrained) or
os.path.exists(pretrained + '.pdparams')):
raise ValueError("Model pretrain path {} does not "
"exists.".format(pretrained))
param_state_dict = paddle.load(pretrained + '.pdparams')
model.set_state_dict(param_state_dict)
2020-11-04 20:43:27 +08:00
logger.info("load pretrained model from {}".format(
pretrained_model))
else:
2020-10-13 17:13:33 +08:00
logger.info('train from scratch')
return best_model_dict
2020-05-10 16:26:57 +08:00
def load_dygraph_params(config, model, logger, optimizer):
ckp = config['Global']['checkpoints']
2021-07-01 15:41:02 +08:00
if ckp and os.path.exists(ckp + ".pdparams"):
pre_best_model_dict = init_model(config, model, optimizer)
return pre_best_model_dict
else:
pm = config['Global']['pretrained_model']
if pm is None:
return {}
2021-07-01 15:26:55 +08:00
if not os.path.exists(pm) and not os.path.exists(pm + ".pdparams"):
logger.info(f"The pretrained_model {pm} does not exists!")
return {}
pm = pm if pm.endswith('.pdparams') else pm + '.pdparams'
params = paddle.load(pm)
state_dict = model.state_dict()
new_state_dict = {}
for k1, k2 in zip(state_dict.keys(), params.keys()):
if list(state_dict[k1].shape) == list(params[k2].shape):
new_state_dict[k1] = params[k2]
else:
logger.info(
f"The shape of model params {k1} {state_dict[k1].shape} not matched with loaded params {k2} {params[k2].shape} !"
)
model.set_state_dict(new_state_dict)
logger.info(f"loaded pretrained_model successful from {pm}")
return {}
2021-07-07 09:54:03 +08:00
def load_pretrained_params(model, path):
if path is None:
return False
if not os.path.exists(path) and not os.path.exists(path + ".pdparams"):
print(f"The pretrained_model {path} does not exists!")
return False
path = path if path.endswith('.pdparams') else path + '.pdparams'
params = paddle.load(path)
state_dict = model.state_dict()
new_state_dict = {}
for k1, k2 in zip(state_dict.keys(), params.keys()):
if list(state_dict[k1].shape) == list(params[k2].shape):
new_state_dict[k1] = params[k2]
2021-07-07 15:54:02 +08:00
else:
print(
f"The shape of model params {k1} {state_dict[k1].shape} not matched with loaded params {k2} {params[k2].shape} !"
)
2021-07-07 09:54:03 +08:00
model.set_state_dict(new_state_dict)
2021-07-07 15:54:02 +08:00
print(f"load pretrain successful from {path}")
2021-07-08 22:32:44 +08:00
return model
def save_model(model,
2020-10-13 17:13:33 +08:00
optimizer,
model_path,
logger,
is_best=False,
prefix='ppocr',
**kwargs):
2020-05-10 16:26:57 +08:00
"""
save model to the target path
"""
2020-10-13 17:13:33 +08:00
_mkdir_if_not_exist(model_path, logger)
model_prefix = os.path.join(model_path, prefix)
paddle.save(model.state_dict(), model_prefix + '.pdparams')
2020-11-09 13:27:31 +08:00
paddle.save(optimizer.state_dict(), model_prefix + '.pdopt')
2020-10-13 17:13:33 +08:00
# save metric and config
with open(model_prefix + '.states', 'wb') as f:
pickle.dump(kwargs, f, protocol=2)
if is_best:
logger.info('save best model is to {}'.format(model_prefix))
else:
logger.info("save model in {}".format(model_prefix))