PaddleOCR/test1/api.md

87 lines
3.1 KiB
Markdown
Raw Normal View History

2021-06-11 14:17:59 +08:00
# PaddleStructure
2021-06-18 12:55:44 +08:00
install layoutparser
```sh
wget https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
pip3 install layoutparser-0.0.0-py3-none-any.whl
```
2021-06-11 14:17:59 +08:00
## 1. Introduction to pipeline
PaddleStructure is a toolkit for complex layout text OCR, the process is as follows
![pipeline](../doc/table/pipeline.png)
In PaddleStructure, the image will be analyzed by layoutparser first. In the layout analysis, the area in the image will be classified, and the OCR process will be carried out according to the category.
Currently layoutparser will output five categories:
1. Text
2. Title
3. Figure
4. List
5. Table
Types 1-4 follow the traditional OCR process, and 5 follow the Table OCR process.
## 2. LayoutParser
## 3. Table OCR
[doc](table/README.md)
2021-06-23 12:45:05 +08:00
## 4. Predictive by inference engine
2021-06-11 14:17:59 +08:00
2021-06-23 12:45:05 +08:00
Use the following commands to complete the inference
```python
python3 table/predict_system.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output ../output/table
```
After running, each image will have a directory with the same name under the directory specified in the output field. Each table in the picture will be stored as an excel, and the excel file name will be the coordinates of the table in the image.
## 5. PaddleStructure whl package introduction
### 5.1 Use
2021-06-11 14:17:59 +08:00
2021-06-23 12:45:05 +08:00
5.1.1 Use by code
2021-06-11 14:17:59 +08:00
```python
2021-06-23 12:28:32 +08:00
import os
2021-06-11 14:17:59 +08:00
import cv2
2021-06-23 12:28:32 +08:00
from paddlestructure import PaddleStructure,draw_result,save_res
2021-06-11 14:17:59 +08:00
2021-06-23 12:28:32 +08:00
table_engine = PaddleStructure(show_log=True)
2021-06-11 14:17:59 +08:00
2021-06-23 12:28:32 +08:00
save_folder = './output/table'
2021-06-11 14:17:59 +08:00
img_path = '../doc/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
2021-06-23 12:28:32 +08:00
save_res(result, save_folder,os.path.basename(img_path).split('.')[0])
2021-06-11 14:17:59 +08:00
for line in result:
print(line)
from PIL import Image
font_path = 'path/tp/PaddleOCR/doc/fonts/simfang.ttf'
image = Image.open(img_path).convert('RGB')
im_show = draw_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
2021-06-23 12:45:05 +08:00
5.1.2 Use by command line
2021-06-11 14:17:59 +08:00
```bash
paddlestructure --image_dir=../doc/table/1.png
```
2021-06-24 15:45:51 +08:00
### Parameter Description
Most of the parameters are consistent with the paddleocr whl package, see [whl package documentation](../doc/doc_ch/whl.md)
2021-06-11 14:17:59 +08:00
2021-06-24 15:45:51 +08:00
| Parameter | Description | Default |
2021-06-11 14:17:59 +08:00
|------------------------|------------------------------------------------------|------------------|
2021-06-24 10:02:52 +08:00
| output | The path where excel and recognition results are saved | ./output/table |
| structure_max_len | When the table structure model predicts, the long side of the image is resized | 488 |
| structure_model_dir | Table structure inference model path | None |
| structure_char_type | Dictionary path used by table structure model | ../ppocr/utils/dict/table_structure_dict.tx |
2021-06-11 14:17:59 +08:00