80 lines
3.0 KiB
Python
80 lines
3.0 KiB
Python
|
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import paddle
|
||
|
from paddle import nn
|
||
|
import fasttext
|
||
|
|
||
|
|
||
|
class AsterLoss(nn.Layer):
|
||
|
def __init__(self,
|
||
|
weight=None,
|
||
|
size_average=True,
|
||
|
ignore_index=-100,
|
||
|
sequence_normalize=False,
|
||
|
sample_normalize=True,
|
||
|
**kwargs):
|
||
|
super(AsterLoss, self).__init__()
|
||
|
self.weight = weight
|
||
|
self.size_average = size_average
|
||
|
self.ignore_index = ignore_index
|
||
|
self.sequence_normalize = sequence_normalize
|
||
|
self.sample_normalize = sample_normalize
|
||
|
self.loss_func = paddle.nn.CosineSimilarity()
|
||
|
|
||
|
def forward(self, predicts, batch):
|
||
|
targets = batch[1].astype("int64")
|
||
|
label_lengths = batch[2].astype('int64')
|
||
|
# sem_target = batch[3].astype('float32')
|
||
|
embedding_vectors = predicts['embedding_vectors']
|
||
|
rec_pred = predicts['rec_pred']
|
||
|
|
||
|
# semantic loss
|
||
|
# print(embedding_vectors)
|
||
|
# print(embedding_vectors.shape)
|
||
|
# targets = fasttext[targets]
|
||
|
# sem_loss = 1 - self.loss_func(embedding_vectors, targets)
|
||
|
|
||
|
# rec loss
|
||
|
batch_size, num_steps, num_classes = rec_pred.shape[0], rec_pred.shape[
|
||
|
1], rec_pred.shape[2]
|
||
|
assert len(targets.shape) == len(list(rec_pred.shape)) - 1, \
|
||
|
"The target's shape and inputs's shape is [N, d] and [N, num_steps]"
|
||
|
|
||
|
mask = paddle.zeros([batch_size, num_steps])
|
||
|
for i in range(batch_size):
|
||
|
mask[i, :label_lengths[i]] = 1
|
||
|
mask = paddle.cast(mask, "float32")
|
||
|
max_length = max(label_lengths)
|
||
|
assert max_length == rec_pred.shape[1]
|
||
|
targets = targets[:, :max_length]
|
||
|
mask = mask[:, :max_length]
|
||
|
rec_pred = paddle.reshape(rec_pred, [-1, rec_pred.shape[-1]])
|
||
|
input = nn.functional.log_softmax(rec_pred, axis=1)
|
||
|
targets = paddle.reshape(targets, [-1, 1])
|
||
|
mask = paddle.reshape(mask, [-1, 1])
|
||
|
# print("input:", input)
|
||
|
output = -paddle.gather(input, index=targets, axis=1) * mask
|
||
|
output = paddle.sum(output)
|
||
|
if self.sequence_normalize:
|
||
|
output = output / paddle.sum(mask)
|
||
|
if self.sample_normalize:
|
||
|
output = output / batch_size
|
||
|
loss = output
|
||
|
return {'loss': loss} # , 'sem_loss':sem_loss}
|