PaddleOCR/ppocr/utils/utility.py

72 lines
2.3 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
def initial_logger():
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
return logger
import importlib
def create_module(module_str):
tmpss = module_str.split(",")
assert len(tmpss) == 2, "Error formate\
of the module path: {}".format(module_str)
module_name, function_name = tmpss[0], tmpss[1]
somemodule = importlib.import_module(module_name, __package__)
function = getattr(somemodule, function_name)
return function
def get_check_global_params(mode):
check_params = ['use_gpu', 'max_text_length', 'image_shape',\
'image_shape', 'character_type', 'loss_type']
if mode == "train_eval":
check_params = check_params + [\
'train_batch_size_per_card', 'test_batch_size_per_card']
elif mode == "test":
check_params = check_params + ['test_batch_size_per_card']
return check_params
def get_check_reader_params(mode):
check_params = []
if mode == "train_eval":
check_params = ['TrainReader', 'EvalReader']
elif mode == "test":
check_params = ['TestReader']
return check_params
from paddle import fluid
def create_multi_devices_program(program, loss_var_name):
build_strategy = fluid.BuildStrategy()
build_strategy.memory_optimize = False
build_strategy.enable_inplace = True
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_iteration_per_drop_scope = 1
compile_program = fluid.CompiledProgram(program).with_data_parallel(
loss_name=loss_var_name,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
return compile_program