PaddleOCR/tools/eval.py

72 lines
2.4 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
2020-06-12 13:49:24 +08:00
import os
import sys
2020-10-13 17:13:33 +08:00
__dir__ = os.path.dirname(os.path.abspath(__file__))
2020-06-12 13:49:24 +08:00
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
2020-05-10 16:26:57 +08:00
2020-10-13 17:13:33 +08:00
from ppocr.data import build_dataloader
2020-11-09 13:28:15 +08:00
from ppocr.modeling.architectures import build_model
2020-10-13 17:13:33 +08:00
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import init_model
from ppocr.utils.utility import print_dict
import tools.program as program
2020-05-10 16:26:57 +08:00
2020-10-13 17:13:33 +08:00
def main():
global_config = config['Global']
# build dataloader
2020-11-09 13:28:15 +08:00
valid_dataloader = build_dataloader(config, 'Eval', device, logger)
2020-05-10 16:26:57 +08:00
2020-10-13 17:13:33 +08:00
# build post process
post_process_class = build_post_process(config['PostProcess'],
global_config)
2020-05-10 16:26:57 +08:00
2020-10-13 17:13:33 +08:00
# build model
# for rec algorithm
if hasattr(post_process_class, 'character'):
config['Architecture']["Head"]['out_channels'] = len(
getattr(post_process_class, 'character'))
model = build_model(config['Architecture'])
2021-02-08 13:41:23 +08:00
use_srn = config['Architecture']['algorithm'] == "SRN"
2020-05-10 16:26:57 +08:00
2020-10-13 17:13:33 +08:00
best_model_dict = init_model(config, model, logger)
if len(best_model_dict):
logger.info('metric in ckpt ***************')
for k, v in best_model_dict.items():
logger.info('{}:{}'.format(k, v))
2020-05-10 16:26:57 +08:00
2020-10-13 17:13:33 +08:00
# build metric
eval_class = build_metric(config['Metric'])
2020-05-10 16:26:57 +08:00
2020-10-13 17:13:33 +08:00
# start eval
2020-11-09 13:28:15 +08:00
metirc = program.eval(model, valid_dataloader, post_process_class,
2021-02-08 13:41:23 +08:00
eval_class, use_srn)
2020-10-13 17:13:33 +08:00
logger.info('metric eval ***************')
for k, v in metirc.items():
logger.info('{}:{}'.format(k, v))
2020-05-10 16:26:57 +08:00
if __name__ == '__main__':
2020-11-09 13:28:15 +08:00
config, device, logger, vdl_writer = program.preprocess()
2020-05-10 16:26:57 +08:00
main()