59 lines
2.2 KiB
Python
59 lines
2.2 KiB
Python
|
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
#you may not use this file except in compliance with the License.
|
||
|
#You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
#Unless required by applicable law or agreed to in writing, software
|
||
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
#See the License for the specific language governing permissions and
|
||
|
#limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import math
|
||
|
|
||
|
import paddle
|
||
|
import paddle.fluid as fluid
|
||
|
|
||
|
|
||
|
class SRNLoss(object):
|
||
|
def __init__(self, params):
|
||
|
super(SRNLoss, self).__init__()
|
||
|
self.char_num = params['char_num']
|
||
|
|
||
|
def __call__(self, predicts, others):
|
||
|
predict = predicts['predict']
|
||
|
word_predict = predicts['word_out']
|
||
|
gsrm_predict = predicts['gsrm_out']
|
||
|
label = others['label']
|
||
|
lbl_weight = others['lbl_weight']
|
||
|
|
||
|
casted_label = fluid.layers.cast(x=label, dtype='int64')
|
||
|
cost_word = fluid.layers.cross_entropy(input=word_predict, label=casted_label)
|
||
|
cost_gsrm = fluid.layers.cross_entropy(input=gsrm_predict, label=casted_label)
|
||
|
cost_vsfd = fluid.layers.cross_entropy(input=predict, label=casted_label)
|
||
|
|
||
|
#cost_word = cost_word * lbl_weight
|
||
|
#cost_gsrm = cost_gsrm * lbl_weight
|
||
|
#cost_vsfd = cost_vsfd * lbl_weight
|
||
|
|
||
|
cost_word = fluid.layers.reshape(x=fluid.layers.reduce_sum(cost_word), shape=[1])
|
||
|
cost_gsrm = fluid.layers.reshape(x=fluid.layers.reduce_sum(cost_gsrm), shape=[1])
|
||
|
cost_vsfd = fluid.layers.reshape(x=fluid.layers.reduce_sum(cost_vsfd), shape=[1])
|
||
|
|
||
|
sum_cost = fluid.layers.sum([cost_word, cost_vsfd * 2.0, cost_gsrm * 0.15])
|
||
|
|
||
|
#sum_cost = fluid.layers.sum([cost_word * 3.0, cost_vsfd, cost_gsrm * 0.15])
|
||
|
#sum_cost = cost_word
|
||
|
|
||
|
#fluid.layers.Print(cost_word,message="word_cost")
|
||
|
#fluid.layers.Print(cost_vsfd,message="img_cost")
|
||
|
return [sum_cost,cost_vsfd,cost_word]
|
||
|
#return [sum_cost, cost_vsfd, cost_word]
|