PaddleOCR/tools/infer_table.py

108 lines
3.6 KiB
Python
Raw Normal View History

2021-06-16 16:47:33 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import os
import sys
import json
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import paddle
from paddle.jit import to_static
from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from ppocr.utils.utility import get_image_file_list
import tools.program as program
import cv2
def main(config, device, logger, vdl_writer):
global_config = config['Global']
# build post process
post_process_class = build_post_process(config['PostProcess'],
global_config)
# build model
if hasattr(post_process_class, 'character'):
config['Architecture']["Head"]['out_channels'] = len(
getattr(post_process_class, 'character'))
model = build_model(config['Architecture'])
init_model(config, model, logger)
# create data ops
transforms = []
use_padding = False
for op in config['Eval']['dataset']['transforms']:
op_name = list(op)[0]
if 'Label' in op_name:
continue
if op_name == 'KeepKeys':
op[op_name]['keep_keys'] = ['image']
if op_name == "ResizeTableImage":
use_padding = True
padding_max_len = op['ResizeTableImage']['max_len']
transforms.append(op)
global_config['infer_mode'] = True
ops = create_operators(transforms, global_config)
model.eval()
for file in get_image_file_list(config['Global']['infer_img']):
logger.info("infer_img: {}".format(file))
with open(file, 'rb') as f:
img = f.read()
data = {'image': img}
batch = transform(data, ops)
images = np.expand_dims(batch[0], axis=0)
images = paddle.to_tensor(images)
2021-06-22 11:32:00 +08:00
preds = model(images)
2021-06-16 16:47:33 +08:00
post_result = post_process_class(preds)
res_html_code = post_result['res_html_code']
res_loc = post_result['res_loc']
img = cv2.imread(file)
imgh, imgw = img.shape[0:2]
res_loc_final = []
for rno in range(len(res_loc[0])):
x0, y0, x1, y1 = res_loc[0][rno]
left = max(int(imgw * x0), 0)
top = max(int(imgh * y0), 0)
right = min(int(imgw * x1), imgw - 1)
bottom = min(int(imgh * y1), imgh - 1)
cv2.rectangle(img, (left, top), (right, bottom), (0, 0, 255), 2)
res_loc_final.append([left, top, right, bottom])
res_loc_str = json.dumps(res_loc_final)
logger.info("result: {}, {}".format(res_html_code, res_loc_final))
logger.info("success!")
if __name__ == '__main__':
config, device, logger, vdl_writer = program.preprocess()
main(config, device, logger, vdl_writer)