2021-06-10 14:24:59 +08:00
|
|
|
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from PIL import Image
|
|
|
|
import numpy as np
|
|
|
|
from tools.infer.utility import draw_ocr_box_txt, init_args as infer_args
|
|
|
|
|
|
|
|
|
|
|
|
def init_args():
|
|
|
|
parser = infer_args()
|
|
|
|
|
|
|
|
# params for output
|
|
|
|
parser.add_argument("--output", type=str, default='./output/table')
|
|
|
|
# params for table structure
|
2021-06-23 12:28:32 +08:00
|
|
|
parser.add_argument("--table_max_len", type=int, default=488)
|
|
|
|
parser.add_argument("--table_model_dir", type=str)
|
|
|
|
parser.add_argument("--table_char_type", type=str, default='en')
|
|
|
|
parser.add_argument("--table_char_dict_path", type=str, default="../ppocr/utils/dict/table_structure_dict.txt")
|
2021-06-10 14:24:59 +08:00
|
|
|
|
|
|
|
return parser
|
|
|
|
|
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
parser = init_args()
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
|
|
|
2021-08-02 15:28:07 +08:00
|
|
|
def draw_structure_result(image, result, font_path):
|
2021-06-10 14:24:59 +08:00
|
|
|
if isinstance(image, np.ndarray):
|
|
|
|
image = Image.fromarray(image)
|
|
|
|
boxes, txts, scores = [], [], []
|
|
|
|
for region in result:
|
|
|
|
if region['type'] == 'Table':
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
for box, rec_res in zip(region['res'][0], region['res'][1]):
|
|
|
|
boxes.append(np.array(box).reshape(-1, 2))
|
|
|
|
txts.append(rec_res[0])
|
|
|
|
scores.append(rec_res[1])
|
|
|
|
im_show = draw_ocr_box_txt(image, boxes, txts, scores, font_path=font_path,drop_score=0)
|
|
|
|
return im_show
|