2020-05-10 16:26:57 +08:00
|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import numpy as np
|
2020-06-12 13:49:24 +08:00
|
|
|
import os
|
|
|
|
import sys
|
2020-08-12 12:56:44 +08:00
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
2020-06-12 13:49:24 +08:00
|
|
|
sys.path.append(__dir__)
|
2020-08-12 12:56:44 +08:00
|
|
|
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
|
2020-05-10 16:26:57 +08:00
|
|
|
|
2020-06-02 19:03:27 +08:00
|
|
|
|
2020-05-10 16:26:57 +08:00
|
|
|
def set_paddle_flags(**kwargs):
|
|
|
|
for key, value in kwargs.items():
|
|
|
|
if os.environ.get(key, None) is None:
|
|
|
|
os.environ[key] = str(value)
|
|
|
|
|
|
|
|
|
|
|
|
# NOTE(paddle-dev): All of these flags should be
|
|
|
|
# set before `import paddle`. Otherwise, it would
|
|
|
|
# not take any effect.
|
|
|
|
set_paddle_flags(
|
|
|
|
FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory
|
|
|
|
)
|
|
|
|
|
2020-06-12 13:49:24 +08:00
|
|
|
import tools.program as program
|
2020-05-10 16:26:57 +08:00
|
|
|
from paddle import fluid
|
|
|
|
from ppocr.utils.utility import initial_logger
|
|
|
|
logger = initial_logger()
|
|
|
|
from ppocr.data.reader_main import reader_main
|
|
|
|
from ppocr.utils.save_load import init_model
|
|
|
|
from ppocr.utils.character import CharacterOps
|
|
|
|
from ppocr.utils.utility import create_module
|
2020-05-12 20:51:28 +08:00
|
|
|
from ppocr.utils.utility import get_image_file_list
|
2020-05-10 16:26:57 +08:00
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
config = program.load_config(FLAGS.config)
|
|
|
|
program.merge_config(FLAGS.opt)
|
|
|
|
logger.info(config)
|
|
|
|
char_ops = CharacterOps(config['Global'])
|
2020-06-03 13:44:07 +08:00
|
|
|
loss_type = config['Global']['loss_type']
|
2020-05-10 16:26:57 +08:00
|
|
|
config['Global']['char_ops'] = char_ops
|
|
|
|
|
|
|
|
# check if set use_gpu=True in paddlepaddle cpu version
|
|
|
|
use_gpu = config['Global']['use_gpu']
|
|
|
|
# check_gpu(use_gpu)
|
|
|
|
|
|
|
|
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
|
|
|
rec_model = create_module(config['Architecture']['function'])(params=config)
|
|
|
|
startup_prog = fluid.Program()
|
|
|
|
eval_prog = fluid.Program()
|
|
|
|
with fluid.program_guard(eval_prog, startup_prog):
|
|
|
|
with fluid.unique_name.guard():
|
|
|
|
_, outputs = rec_model(mode="test")
|
|
|
|
fetch_name_list = list(outputs.keys())
|
|
|
|
fetch_varname_list = [outputs[v].name for v in fetch_name_list]
|
|
|
|
eval_prog = eval_prog.clone(for_test=True)
|
|
|
|
exe.run(startup_prog)
|
|
|
|
|
|
|
|
init_model(config, eval_prog, exe)
|
|
|
|
|
2020-05-11 17:52:43 +08:00
|
|
|
blobs = reader_main(config, 'test')()
|
2020-06-02 19:03:27 +08:00
|
|
|
infer_img = config['Global']['infer_img']
|
2020-05-12 19:55:16 +08:00
|
|
|
infer_list = get_image_file_list(infer_img)
|
2020-05-11 17:52:43 +08:00
|
|
|
max_img_num = len(infer_list)
|
|
|
|
if len(infer_list) == 0:
|
|
|
|
logger.info("Can not find img in infer_img dir.")
|
|
|
|
for i in range(max_img_num):
|
2020-07-16 20:14:46 +08:00
|
|
|
logger.info("infer_img:%s" % infer_list[i])
|
2020-05-11 17:52:43 +08:00
|
|
|
img = next(blobs)
|
2020-08-15 15:45:55 +08:00
|
|
|
if loss_type != "srn":
|
|
|
|
predict = exe.run(program=eval_prog,
|
|
|
|
feed={"image": img},
|
|
|
|
fetch_list=fetch_varname_list,
|
|
|
|
return_numpy=False)
|
|
|
|
else:
|
|
|
|
encoder_word_pos_list = []
|
|
|
|
gsrm_word_pos_list = []
|
|
|
|
gsrm_slf_attn_bias1_list = []
|
|
|
|
gsrm_slf_attn_bias2_list = []
|
|
|
|
encoder_word_pos_list.append(img[1])
|
|
|
|
gsrm_word_pos_list.append(img[2])
|
|
|
|
gsrm_slf_attn_bias1_list.append(img[3])
|
|
|
|
gsrm_slf_attn_bias2_list.append(img[4])
|
|
|
|
|
|
|
|
encoder_word_pos_list = np.concatenate(
|
|
|
|
encoder_word_pos_list, axis=0).astype(np.int64)
|
|
|
|
gsrm_word_pos_list = np.concatenate(
|
|
|
|
gsrm_word_pos_list, axis=0).astype(np.int64)
|
|
|
|
gsrm_slf_attn_bias1_list = np.concatenate(
|
|
|
|
gsrm_slf_attn_bias1_list, axis=0).astype(np.float32)
|
|
|
|
gsrm_slf_attn_bias2_list = np.concatenate(
|
|
|
|
gsrm_slf_attn_bias2_list, axis=0).astype(np.float32)
|
|
|
|
|
|
|
|
predict = exe.run(program=eval_prog, \
|
|
|
|
feed={'image': img[0], 'encoder_word_pos': encoder_word_pos_list,
|
|
|
|
'gsrm_word_pos': gsrm_word_pos_list, 'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1_list,
|
|
|
|
'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2_list}, \
|
|
|
|
fetch_list=fetch_varname_list, \
|
|
|
|
return_numpy=False)
|
2020-06-02 15:53:02 +08:00
|
|
|
if loss_type == "ctc":
|
|
|
|
preds = np.array(predict[0])
|
2020-05-10 16:26:57 +08:00
|
|
|
preds = preds.reshape(-1)
|
|
|
|
preds_lod = predict[0].lod()[0]
|
|
|
|
preds_text = char_ops.decode(preds)
|
2020-06-02 15:53:02 +08:00
|
|
|
probs = np.array(predict[1])
|
|
|
|
ind = np.argmax(probs, axis=1)
|
|
|
|
blank = probs.shape[1]
|
|
|
|
valid_ind = np.where(ind != (blank - 1))[0]
|
2020-07-01 13:30:03 +08:00
|
|
|
if len(valid_ind) == 0:
|
2020-07-01 12:45:59 +08:00
|
|
|
continue
|
2020-06-02 15:53:02 +08:00
|
|
|
score = np.mean(probs[valid_ind, ind[valid_ind]])
|
|
|
|
elif loss_type == "attention":
|
|
|
|
preds = np.array(predict[0])
|
|
|
|
probs = np.array(predict[1])
|
2020-05-10 16:26:57 +08:00
|
|
|
end_pos = np.where(preds[0, :] == 1)[0]
|
|
|
|
if len(end_pos) <= 1:
|
2020-06-02 15:53:02 +08:00
|
|
|
preds = preds[0, 1:]
|
|
|
|
score = np.mean(probs[0, 1:])
|
2020-05-10 16:26:57 +08:00
|
|
|
else:
|
2020-06-02 15:53:02 +08:00
|
|
|
preds = preds[0, 1:end_pos[1]]
|
|
|
|
score = np.mean(probs[0, 1:end_pos[1]])
|
|
|
|
preds = preds.reshape(-1)
|
|
|
|
preds_text = char_ops.decode(preds)
|
2020-08-15 15:45:55 +08:00
|
|
|
elif loss_type == "srn":
|
2020-08-25 15:04:49 +08:00
|
|
|
char_num = char_ops.get_char_num()
|
2020-08-15 15:45:55 +08:00
|
|
|
preds = np.array(predict[0])
|
|
|
|
preds = preds.reshape(-1)
|
|
|
|
probs = np.array(predict[1])
|
|
|
|
ind = np.argmax(probs, axis=1)
|
2020-09-03 15:51:50 +08:00
|
|
|
valid_ind = np.where(preds != int(char_num - 1))[0]
|
2020-08-15 15:45:55 +08:00
|
|
|
if len(valid_ind) == 0:
|
|
|
|
continue
|
|
|
|
score = np.mean(probs[valid_ind, ind[valid_ind]])
|
|
|
|
preds = preds[:valid_ind[-1] + 1]
|
|
|
|
preds_text = char_ops.decode(preds)
|
2020-07-16 20:14:46 +08:00
|
|
|
logger.info("\t index: {}".format(preds))
|
|
|
|
logger.info("\t word : {}".format(preds_text))
|
|
|
|
logger.info("\t score: {}".format(score))
|
2020-05-10 16:26:57 +08:00
|
|
|
|
|
|
|
# save for inference model
|
|
|
|
target_var = []
|
|
|
|
for key, values in outputs.items():
|
|
|
|
target_var.append(values)
|
|
|
|
|
|
|
|
fluid.io.save_inference_model(
|
|
|
|
"./output/",
|
2020-09-03 16:06:57 +08:00
|
|
|
feeded_var_names=['image'],
|
2020-05-10 16:26:57 +08:00
|
|
|
target_vars=target_var,
|
|
|
|
executor=exe,
|
|
|
|
main_program=eval_prog,
|
|
|
|
model_filename="model",
|
|
|
|
params_filename="params")
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = program.ArgsParser()
|
|
|
|
FLAGS = parser.parse_args()
|
|
|
|
main()
|