2020-05-10 16:26:57 +08:00
|
|
|
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
#you may not use this file except in compliance with the License.
|
|
|
|
#You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
#Unless required by applicable law or agreed to in writing, software
|
|
|
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
#See the License for the specific language governing permissions and
|
|
|
|
#limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import math
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
|
|
|
|
|
|
|
class DBHead(object):
|
|
|
|
"""
|
|
|
|
Differentiable Binarization (DB) for text detection:
|
|
|
|
see https://arxiv.org/abs/1911.08947
|
|
|
|
args:
|
|
|
|
params(dict): super parameters for build DB network
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, params):
|
|
|
|
self.k = params['k']
|
|
|
|
self.inner_channels = params['inner_channels']
|
|
|
|
self.C, self.H, self.W = params['image_shape']
|
|
|
|
print(self.C, self.H, self.W)
|
|
|
|
|
|
|
|
def binarize(self, x):
|
|
|
|
conv1 = fluid.layers.conv2d(
|
|
|
|
input=x,
|
|
|
|
num_filters=self.inner_channels // 4,
|
|
|
|
filter_size=3,
|
|
|
|
padding=1,
|
|
|
|
param_attr=fluid.initializer.MSRAInitializer(uniform=False),
|
|
|
|
bias_attr=False)
|
|
|
|
conv_bn1 = fluid.layers.batch_norm(
|
|
|
|
input=conv1,
|
|
|
|
param_attr=fluid.initializer.ConstantInitializer(value=1.0),
|
|
|
|
bias_attr=fluid.initializer.ConstantInitializer(value=1e-4),
|
|
|
|
act="relu")
|
|
|
|
conv2 = fluid.layers.conv2d_transpose(
|
|
|
|
input=conv_bn1,
|
|
|
|
num_filters=self.inner_channels // 4,
|
|
|
|
filter_size=2,
|
|
|
|
stride=2,
|
|
|
|
param_attr=fluid.initializer.MSRAInitializer(uniform=False),
|
|
|
|
bias_attr=self._get_bias_attr(0.0004, conv_bn1.shape[1], "conv2"),
|
|
|
|
act=None)
|
|
|
|
conv_bn2 = fluid.layers.batch_norm(
|
|
|
|
input=conv2,
|
|
|
|
param_attr=fluid.initializer.ConstantInitializer(value=1.0),
|
|
|
|
bias_attr=fluid.initializer.ConstantInitializer(value=1e-4),
|
|
|
|
act="relu")
|
|
|
|
conv3 = fluid.layers.conv2d_transpose(
|
|
|
|
input=conv_bn2,
|
|
|
|
num_filters=1,
|
|
|
|
filter_size=2,
|
|
|
|
stride=2,
|
|
|
|
param_attr=fluid.initializer.MSRAInitializer(uniform=False),
|
|
|
|
bias_attr=self._get_bias_attr(0.0004, conv_bn2.shape[1], "conv3"),
|
|
|
|
act=None)
|
|
|
|
out = fluid.layers.sigmoid(conv3)
|
|
|
|
return out
|
|
|
|
|
|
|
|
def thresh(self, x):
|
|
|
|
conv1 = fluid.layers.conv2d(
|
|
|
|
input=x,
|
|
|
|
num_filters=self.inner_channels // 4,
|
|
|
|
filter_size=3,
|
|
|
|
padding=1,
|
|
|
|
param_attr=fluid.initializer.MSRAInitializer(uniform=False),
|
|
|
|
bias_attr=False)
|
|
|
|
conv_bn1 = fluid.layers.batch_norm(
|
|
|
|
input=conv1,
|
|
|
|
param_attr=fluid.initializer.ConstantInitializer(value=1.0),
|
|
|
|
bias_attr=fluid.initializer.ConstantInitializer(value=1e-4),
|
|
|
|
act="relu")
|
|
|
|
conv2 = fluid.layers.conv2d_transpose(
|
|
|
|
input=conv_bn1,
|
|
|
|
num_filters=self.inner_channels // 4,
|
|
|
|
filter_size=2,
|
|
|
|
stride=2,
|
|
|
|
param_attr=fluid.initializer.MSRAInitializer(uniform=False),
|
|
|
|
bias_attr=self._get_bias_attr(0.0004, conv_bn1.shape[1], "conv2"),
|
|
|
|
act=None)
|
|
|
|
conv_bn2 = fluid.layers.batch_norm(
|
|
|
|
input=conv2,
|
|
|
|
param_attr=fluid.initializer.ConstantInitializer(value=1.0),
|
|
|
|
bias_attr=fluid.initializer.ConstantInitializer(value=1e-4),
|
|
|
|
act="relu")
|
|
|
|
conv3 = fluid.layers.conv2d_transpose(
|
|
|
|
input=conv_bn2,
|
|
|
|
num_filters=1,
|
|
|
|
filter_size=2,
|
|
|
|
stride=2,
|
|
|
|
param_attr=fluid.initializer.MSRAInitializer(uniform=False),
|
|
|
|
bias_attr=self._get_bias_attr(0.0004, conv_bn2.shape[1], "conv3"),
|
|
|
|
act=None)
|
|
|
|
out = fluid.layers.sigmoid(conv3)
|
|
|
|
return out
|
|
|
|
|
|
|
|
def _get_bias_attr(self, l2_decay, k, name, gradient_clip=None):
|
|
|
|
regularizer = fluid.regularizer.L2Decay(l2_decay)
|
|
|
|
stdv = 1.0 / math.sqrt(k * 1.0)
|
|
|
|
initializer = fluid.initializer.Uniform(-stdv, stdv)
|
|
|
|
bias_attr = fluid.ParamAttr(
|
|
|
|
regularizer=regularizer,
|
|
|
|
initializer=initializer,
|
|
|
|
name=name + "_b_attr")
|
|
|
|
return bias_attr
|
|
|
|
|
|
|
|
def step_function(self, x, y):
|
|
|
|
return fluid.layers.reciprocal(1 + fluid.layers.exp(-self.k * (x - y)))
|
|
|
|
|
|
|
|
def __call__(self, conv_features, mode="train"):
|
2020-09-16 17:33:06 +08:00
|
|
|
"""
|
|
|
|
Fuse different levels of feature map from backbone in the FPN manner.
|
|
|
|
Args:
|
|
|
|
conv_features(list): feature maps from backbone
|
|
|
|
mode(str): runtime mode, can be "train", "eval" or "test"
|
|
|
|
Return: predicts
|
|
|
|
"""
|
2020-05-10 16:26:57 +08:00
|
|
|
c2, c3, c4, c5 = conv_features
|
|
|
|
param_attr = fluid.initializer.MSRAInitializer(uniform=False)
|
|
|
|
in5 = fluid.layers.conv2d(
|
|
|
|
input=c5,
|
|
|
|
num_filters=self.inner_channels,
|
|
|
|
filter_size=1,
|
|
|
|
param_attr=param_attr,
|
|
|
|
bias_attr=False)
|
|
|
|
in4 = fluid.layers.conv2d(
|
|
|
|
input=c4,
|
|
|
|
num_filters=self.inner_channels,
|
|
|
|
filter_size=1,
|
|
|
|
param_attr=param_attr,
|
|
|
|
bias_attr=False)
|
|
|
|
in3 = fluid.layers.conv2d(
|
|
|
|
input=c3,
|
|
|
|
num_filters=self.inner_channels,
|
|
|
|
filter_size=1,
|
|
|
|
param_attr=param_attr,
|
|
|
|
bias_attr=False)
|
|
|
|
in2 = fluid.layers.conv2d(
|
|
|
|
input=c2,
|
|
|
|
num_filters=self.inner_channels,
|
|
|
|
filter_size=1,
|
|
|
|
param_attr=param_attr,
|
|
|
|
bias_attr=False)
|
|
|
|
|
|
|
|
out4 = fluid.layers.elementwise_add(
|
|
|
|
x=fluid.layers.resize_nearest(
|
|
|
|
input=in5, scale=2), y=in4) # 1/16
|
|
|
|
out3 = fluid.layers.elementwise_add(
|
|
|
|
x=fluid.layers.resize_nearest(
|
|
|
|
input=out4, scale=2), y=in3) # 1/8
|
|
|
|
out2 = fluid.layers.elementwise_add(
|
|
|
|
x=fluid.layers.resize_nearest(
|
|
|
|
input=out3, scale=2), y=in2) # 1/4
|
|
|
|
|
|
|
|
p5 = fluid.layers.conv2d(
|
|
|
|
input=in5,
|
|
|
|
num_filters=self.inner_channels // 4,
|
|
|
|
filter_size=3,
|
|
|
|
padding=1,
|
|
|
|
param_attr=param_attr,
|
|
|
|
bias_attr=False)
|
|
|
|
p5 = fluid.layers.resize_nearest(input=p5, scale=8)
|
|
|
|
p4 = fluid.layers.conv2d(
|
|
|
|
input=out4,
|
|
|
|
num_filters=self.inner_channels // 4,
|
|
|
|
filter_size=3,
|
|
|
|
padding=1,
|
|
|
|
param_attr=param_attr,
|
|
|
|
bias_attr=False)
|
|
|
|
p4 = fluid.layers.resize_nearest(input=p4, scale=4)
|
|
|
|
p3 = fluid.layers.conv2d(
|
|
|
|
input=out3,
|
|
|
|
num_filters=self.inner_channels // 4,
|
|
|
|
filter_size=3,
|
|
|
|
padding=1,
|
|
|
|
param_attr=param_attr,
|
|
|
|
bias_attr=False)
|
|
|
|
p3 = fluid.layers.resize_nearest(input=p3, scale=2)
|
|
|
|
p2 = fluid.layers.conv2d(
|
|
|
|
input=out2,
|
|
|
|
num_filters=self.inner_channels // 4,
|
|
|
|
filter_size=3,
|
|
|
|
padding=1,
|
|
|
|
param_attr=param_attr,
|
|
|
|
bias_attr=False)
|
|
|
|
|
|
|
|
fuse = fluid.layers.concat(input=[p5, p4, p3, p2], axis=1)
|
|
|
|
shrink_maps = self.binarize(fuse)
|
|
|
|
if mode != "train":
|
2020-05-26 21:02:27 +08:00
|
|
|
return {"maps": shrink_maps}
|
2020-05-10 16:26:57 +08:00
|
|
|
threshold_maps = self.thresh(fuse)
|
|
|
|
binary_maps = self.step_function(shrink_maps, threshold_maps)
|
|
|
|
y = fluid.layers.concat(
|
|
|
|
input=[shrink_maps, threshold_maps, binary_maps], axis=1)
|
|
|
|
predicts = {}
|
|
|
|
predicts['maps'] = y
|
|
|
|
return predicts
|