PaddleOCR/paddleocr.py

259 lines
10 KiB
Python
Raw Normal View History

2020-08-22 19:42:14 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(os.path.join(__dir__, ''))
import cv2
import numpy as np
from pathlib import Path
import tarfile
import requests
from tqdm import tqdm
from tools.infer import predict_system
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.utility import check_and_read_gif, get_image_file_list
2020-08-22 19:42:14 +08:00
__all__ = ['PaddleOCR']
2020-09-18 11:29:39 +08:00
model_urls = {
2020-09-17 10:27:19 +08:00
'det':
'https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar',
2020-09-18 11:29:39 +08:00
'rec': {
'ch': {
'url':
'https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_infer.tar',
'dict_path': './ppocr/utils/ppocr_keys_v1.txt'
},
'en': {
'url':
'https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_infer.tar',
'dict_path': './ppocr/utils/ic15_dict.txt'
}
},
2020-09-16 20:00:34 +08:00
'cls':
2020-09-17 14:48:22 +08:00
'https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar'
2020-08-22 19:42:14 +08:00
}
SUPPORT_DET_MODEL = ['DB']
SUPPORT_REC_MODEL = ['CRNN']
BASE_DIR = os.path.expanduser("~/.paddleocr/")
2020-08-22 19:42:14 +08:00
def download_with_progressbar(url, save_path):
response = requests.get(url, stream=True)
total_size_in_bytes = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
with open(save_path, 'wb') as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
logger.error("ERROR, something went wrong")
sys.exit(0)
def maybe_download(model_storage_directory, url):
2020-08-22 19:42:14 +08:00
# using custom model
if not os.path.exists(os.path.join(
model_storage_directory, 'model')) or not os.path.exists(
os.path.join(model_storage_directory, 'params')):
tmp_path = os.path.join(model_storage_directory, url.split('/')[-1])
print('download {} to {}'.format(url, tmp_path))
os.makedirs(model_storage_directory, exist_ok=True)
download_with_progressbar(url, tmp_path)
with tarfile.open(tmp_path, 'r') as tarObj:
for member in tarObj.getmembers():
if "model" in member.name:
filename = 'model'
elif "params" in member.name:
filename = 'params'
else:
continue
file = tarObj.extractfile(member)
with open(
os.path.join(model_storage_directory, filename),
'wb') as f:
f.write(file.read())
os.remove(tmp_path)
2020-08-22 19:42:14 +08:00
def parse_args():
import argparse
def str2bool(v):
return v.lower() in ("true", "t", "1")
parser = argparse.ArgumentParser()
# params for prediction engine
parser.add_argument("--use_gpu", type=str2bool, default=True)
parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--gpu_mem", type=int, default=8000)
# params for text detector
parser.add_argument("--image_dir", type=str)
parser.add_argument("--det_algorithm", type=str, default='DB')
parser.add_argument("--det_model_dir", type=str, default=None)
2020-08-22 19:42:14 +08:00
parser.add_argument("--det_max_side_len", type=float, default=960)
# DB parmas
parser.add_argument("--det_db_thresh", type=float, default=0.3)
parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
# EAST parmas
parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)
# params for text recognizer
parser.add_argument("--rec_algorithm", type=str, default='CRNN')
parser.add_argument("--rec_model_dir", type=str, default=None)
2020-08-22 19:42:14 +08:00
parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
parser.add_argument("--rec_char_type", type=str, default='ch')
parser.add_argument("--rec_batch_num", type=int, default=30)
parser.add_argument("--max_text_length", type=int, default=25)
2020-09-18 11:29:39 +08:00
parser.add_argument("--rec_char_dict_path", type=str, default=None)
2020-08-22 19:42:14 +08:00
parser.add_argument("--use_space_char", type=bool, default=True)
2020-09-16 20:00:34 +08:00
# params for text classifier
parser.add_argument("--use_angle_cls", type=str2bool, default=False)
parser.add_argument("--cls_model_dir", type=str, default=None)
parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
parser.add_argument("--label_list", type=list, default=['0', '180'])
parser.add_argument("--cls_batch_num", type=int, default=30)
2020-09-18 11:29:39 +08:00
parser.add_argument("--cls_thresh", type=float, default=0.9)
2020-09-16 20:00:34 +08:00
2020-08-22 19:42:14 +08:00
parser.add_argument("--enable_mkldnn", type=bool, default=False)
2020-09-16 20:00:34 +08:00
parser.add_argument("--use_zero_copy_run", type=bool, default=False)
2020-08-22 19:42:14 +08:00
2020-09-18 11:29:39 +08:00
parser.add_argument("--lang", type=str, default='ch')
2020-08-22 19:42:14 +08:00
parser.add_argument("--det", type=str2bool, default=True)
parser.add_argument("--rec", type=str2bool, default=True)
2020-09-16 20:00:34 +08:00
parser.add_argument("--cls", type=str2bool, default=False)
2020-08-22 19:42:14 +08:00
return parser.parse_args()
class PaddleOCR(predict_system.TextSystem):
def __init__(self, **kwargs):
2020-08-22 19:42:14 +08:00
"""
paddleocr package
args:
**kwargs: other params show in paddleocr --help
"""
postprocess_params = parse_args()
postprocess_params.__dict__.update(**kwargs)
2020-09-16 20:00:34 +08:00
self.use_angle_cls = postprocess_params.use_angle_cls
2020-09-18 11:29:39 +08:00
lang = postprocess_params.lang
assert lang in model_urls['rec'], 'param lang must in {}'.format(
model_urls['rec'].keys())
if postprocess_params.rec_char_dict_path is None:
postprocess_params.rec_char_dict_path = model_urls['rec'][lang][
'dict_path']
2020-08-22 19:42:14 +08:00
# init model dir
if postprocess_params.det_model_dir is None:
postprocess_params.det_model_dir = os.path.join(BASE_DIR, 'det')
if postprocess_params.rec_model_dir is None:
2020-09-18 11:29:39 +08:00
postprocess_params.rec_model_dir = os.path.join(
BASE_DIR, 'rec/{}'.format(lang))
2020-09-16 20:00:34 +08:00
if postprocess_params.cls_model_dir is None:
postprocess_params.cls_model_dir = os.path.join(BASE_DIR, 'cls')
print(postprocess_params)
2020-08-22 19:42:14 +08:00
# download model
2020-09-18 11:29:39 +08:00
maybe_download(postprocess_params.det_model_dir, model_urls['det'])
maybe_download(postprocess_params.rec_model_dir,
model_urls['rec'][lang]['url'])
2020-09-16 20:00:34 +08:00
if self.use_angle_cls:
2020-09-18 11:29:39 +08:00
maybe_download(postprocess_params.cls_model_dir, model_urls['cls'])
2020-08-22 19:42:14 +08:00
if postprocess_params.det_algorithm not in SUPPORT_DET_MODEL:
logger.error('det_algorithm must in {}'.format(SUPPORT_DET_MODEL))
sys.exit(0)
if postprocess_params.rec_algorithm not in SUPPORT_REC_MODEL:
logger.error('rec_algorithm must in {}'.format(SUPPORT_REC_MODEL))
sys.exit(0)
postprocess_params.rec_char_dict_path = Path(
__file__).parent / postprocess_params.rec_char_dict_path
# init det_model and rec_model
super().__init__(postprocess_params)
2020-09-16 20:00:34 +08:00
def ocr(self, img, det=True, rec=True, cls=False):
2020-08-22 19:42:14 +08:00
"""
ocr with paddleocr
args
img: img for ocr, support ndarray, img_path and list or ndarray
det: use text detection or not, if false, only rec will be exec. default is True
rec: use text recognition or not, if false, only det will be exec. default is True
"""
assert isinstance(img, (np.ndarray, list, str))
2020-09-16 20:00:34 +08:00
if cls and not self.use_angle_cls:
print('cls should be false when use_angle_cls is false')
exit(-1)
self.use_angle_cls = cls
2020-08-22 19:42:14 +08:00
if isinstance(img, str):
image_file = img
img, flag = check_and_read_gif(image_file)
if not flag:
img = cv2.imread(image_file)
if img is None:
logger.error("error in loading image:{}".format(image_file))
return None
if det and rec:
dt_boxes, rec_res = self.__call__(img)
return [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
elif det and not rec:
dt_boxes, elapse = self.text_detector(img)
if dt_boxes is None:
return None
return [box.tolist() for box in dt_boxes]
else:
if not isinstance(img, list):
img = [img]
2020-09-16 20:00:34 +08:00
if self.use_angle_cls:
img, cls_res, elapse = self.text_classifier(img)
if not rec:
return cls_res
2020-08-22 19:42:14 +08:00
rec_res, elapse = self.text_recognizer(img)
return rec_res
def main():
# for com
args = parse_args()
image_file_list = get_image_file_list(args.image_dir)
if len(image_file_list) == 0:
logger.error('no images find in {}'.format(args.image_dir))
return
ocr_engine = PaddleOCR()
for img_path in image_file_list:
print(img_path)
2020-09-16 20:00:34 +08:00
result = ocr_engine.ocr(img_path,
det=args.det,
rec=args.rec,
cls=args.cls)
for line in result:
2020-09-16 20:00:34 +08:00
print(line)