124 lines
4.7 KiB
Python
124 lines
4.7 KiB
Python
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from paddle_serving_client import Client
|
||
|
from paddle_serving_app.reader import OCRReader
|
||
|
import cv2
|
||
|
import sys
|
||
|
import numpy as np
|
||
|
import os
|
||
|
import time
|
||
|
import re
|
||
|
import base64
|
||
|
from clas_rpc_server import TextClassifierHelper
|
||
|
from det_rpc_server import TextDetectorHelper
|
||
|
from rec_rpc_server import TextRecognizerHelper
|
||
|
import tools.infer.utility as utility
|
||
|
from tools.infer.predict_system import TextSystem
|
||
|
import copy
|
||
|
|
||
|
global_args = utility.parse_args()
|
||
|
if global_args.use_gpu:
|
||
|
from paddle_serving_server_gpu.web_service import WebService
|
||
|
else:
|
||
|
from paddle_serving_server.web_service import WebService
|
||
|
|
||
|
|
||
|
class TextSystemHelper(TextSystem):
|
||
|
def __init__(self, args):
|
||
|
self.text_detector = TextDetectorHelper(args)
|
||
|
self.text_recognizer = TextRecognizerHelper(args)
|
||
|
self.use_angle_cls = args.use_angle_cls
|
||
|
if self.use_angle_cls:
|
||
|
self.clas_client = Client()
|
||
|
self.clas_client.load_client_config(
|
||
|
"ocr_clas_client/serving_client_conf.prototxt")
|
||
|
self.clas_client.connect(["127.0.0.1:9294"])
|
||
|
self.text_classifier = TextClassifierHelper(args)
|
||
|
self.det_client = Client()
|
||
|
self.det_client.load_client_config(
|
||
|
"ocr_det_server/serving_client_conf.prototxt")
|
||
|
self.det_client.connect(["127.0.0.1:9293"])
|
||
|
self.fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]
|
||
|
|
||
|
def preprocess(self, img):
|
||
|
feed, fetch, self.tmp_args = self.text_detector.preprocess(img)
|
||
|
fetch_map = self.det_client.predict(feed, fetch)
|
||
|
outputs = [fetch_map[x] for x in fetch]
|
||
|
dt_boxes = self.text_detector.postprocess(outputs, self.tmp_args)
|
||
|
if dt_boxes is None:
|
||
|
return None, None
|
||
|
img_crop_list = []
|
||
|
sorted_boxes = SortedBoxes()
|
||
|
dt_boxes = sorted_boxes(dt_boxes)
|
||
|
for bno in range(len(dt_boxes)):
|
||
|
tmp_box = copy.deepcopy(dt_boxes[bno])
|
||
|
img_crop = self.get_rotate_crop_image(img, tmp_box)
|
||
|
img_crop_list.append(img_crop)
|
||
|
if self.use_angle_cls:
|
||
|
feed, fetch, self.tmp_args = self.text_classifier.preprocess(
|
||
|
img_crop_list)
|
||
|
fetch_map = self.clas_client.predict(feed, fetch)
|
||
|
outputs = [fetch_map[x] for x in self.text_classifier.fetch]
|
||
|
for x in fetch_map.keys():
|
||
|
if ".lod" in x:
|
||
|
self.tmp_args[x] = fetch_map[x]
|
||
|
img_crop_list, _ = self.text_classifier.postprocess(outputs,
|
||
|
self.tmp_args)
|
||
|
feed, fetch, self.tmp_args = self.text_recognizer.preprocess(
|
||
|
img_crop_list)
|
||
|
return feed, self.fetch, self.tmp_args
|
||
|
|
||
|
def postprocess(self, outputs, args):
|
||
|
return self.text_recognizer.postprocess(outputs, args)
|
||
|
|
||
|
|
||
|
class OCRService(WebService):
|
||
|
def init_rec(self):
|
||
|
args = utility.parse_args()
|
||
|
self.text_system = TextSystemHelper(args)
|
||
|
|
||
|
def preprocess(self, feed=[], fetch=[]):
|
||
|
# TODO: to handle batch rec images
|
||
|
data = base64.b64decode(feed[0]["image"].encode('utf8'))
|
||
|
data = np.fromstring(data, np.uint8)
|
||
|
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
||
|
feed, fetch, self.tmp_args = self.text_system.preprocess(im)
|
||
|
return feed, fetch
|
||
|
|
||
|
def postprocess(self, feed={}, fetch=[], fetch_map=None):
|
||
|
outputs = [fetch_map[x] for x in self.text_system.fetch]
|
||
|
for x in fetch_map.keys():
|
||
|
if ".lod" in x:
|
||
|
self.tmp_args[x] = fetch_map[x]
|
||
|
rec_res = self.text_system.postprocess(outputs, self.tmp_args)
|
||
|
res = {
|
||
|
"pred_text": [x[0] for x in rec_res],
|
||
|
"score": [str(x[1]) for x in rec_res]
|
||
|
}
|
||
|
return res
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
ocr_service = OCRService(name="ocr")
|
||
|
ocr_service.load_model_config(global_args.rec_model_dir)
|
||
|
ocr_service.init_rec()
|
||
|
if global_args.use_gpu:
|
||
|
ocr_service.prepare_server(
|
||
|
workdir="workdir", port=9292, device="gpu", gpuid=0)
|
||
|
else:
|
||
|
ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu")
|
||
|
ocr_service.run_rpc_service()
|
||
|
ocr_service.run_web_service()
|