PaddleOCR/tools/export_model.py

77 lines
2.3 KiB
Python
Raw Normal View History

2020-11-05 15:13:36 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import paddle
from paddle.jit import to_static
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from tools.program import load_config
from tools.program import merge_config
def parse_args():
def str2bool(v):
return v.lower() in ("true", "t", "1")
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config", help="configuration file to use")
parser.add_argument(
"-o", "--output_path", type=str, default='./output/infer/')
return parser.parse_args()
class Model(paddle.nn.Layer):
def __init__(self, model):
super(Model, self).__init__()
self.pre_model = model
# Please modify the 'shape' according to actual needs
@to_static(input_spec=[
paddle.static.InputSpec(
shape=[None, 3, 32, None], dtype='float32')
])
def forward(self, inputs):
x = self.pre_model(inputs)
return x
def main():
FLAGS = parse_args()
config = load_config(FLAGS.config)
merge_config(FLAGS.opt)
# build post process
post_process_class = build_post_process(config['PostProcess'],
config['Global'])
# build model
#for rec algorithm
if hasattr(post_process_class, 'character'):
char_num = len(getattr(post_process_class, 'character'))
config['Architecture']["Head"]['out_channels'] = char_num
model = build_model(config['Architecture'])
init_model(config, model, logger)
model.eval()
model = Model(model)
paddle.jit.save(model, FLAGS.output_path)
if __name__ == "__main__":
main()