2020-05-10 16:26:57 +08:00
|
|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
|
from __future__ import division
|
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
2020-10-13 17:13:33 +08:00
|
|
|
|
import os
|
2020-05-10 16:26:57 +08:00
|
|
|
|
import sys
|
2021-04-27 10:32:17 +08:00
|
|
|
|
import platform
|
2020-05-10 16:26:57 +08:00
|
|
|
|
import yaml
|
|
|
|
|
import time
|
2020-10-13 17:13:33 +08:00
|
|
|
|
import shutil
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.distributed as dist
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
from argparse import ArgumentParser, RawDescriptionHelpFormatter
|
|
|
|
|
|
2020-05-10 16:26:57 +08:00
|
|
|
|
from ppocr.utils.stats import TrainingStats
|
|
|
|
|
from ppocr.utils.save_load import save_model
|
2020-11-04 20:43:27 +08:00
|
|
|
|
from ppocr.utils.utility import print_dict
|
|
|
|
|
from ppocr.utils.logging import get_logger
|
|
|
|
|
from ppocr.data import build_dataloader
|
|
|
|
|
import numpy as np
|
2020-05-10 16:26:57 +08:00
|
|
|
|
|
2020-11-05 15:13:36 +08:00
|
|
|
|
|
2020-05-10 16:26:57 +08:00
|
|
|
|
class ArgsParser(ArgumentParser):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super(ArgsParser, self).__init__(
|
|
|
|
|
formatter_class=RawDescriptionHelpFormatter)
|
|
|
|
|
self.add_argument("-c", "--config", help="configuration file to use")
|
|
|
|
|
self.add_argument(
|
|
|
|
|
"-o", "--opt", nargs='+', help="set configuration options")
|
|
|
|
|
|
|
|
|
|
def parse_args(self, argv=None):
|
|
|
|
|
args = super(ArgsParser, self).parse_args(argv)
|
|
|
|
|
assert args.config is not None, \
|
|
|
|
|
"Please specify --config=configure_file_path."
|
|
|
|
|
args.opt = self._parse_opt(args.opt)
|
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
def _parse_opt(self, opts):
|
|
|
|
|
config = {}
|
|
|
|
|
if not opts:
|
|
|
|
|
return config
|
|
|
|
|
for s in opts:
|
|
|
|
|
s = s.strip()
|
|
|
|
|
k, v = s.split('=')
|
|
|
|
|
config[k] = yaml.load(v, Loader=yaml.Loader)
|
|
|
|
|
return config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AttrDict(dict):
|
|
|
|
|
"""Single level attribute dict, NOT recursive"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
super(AttrDict, self).__init__()
|
|
|
|
|
super(AttrDict, self).update(kwargs)
|
|
|
|
|
|
|
|
|
|
def __getattr__(self, key):
|
|
|
|
|
if key in self:
|
|
|
|
|
return self[key]
|
|
|
|
|
raise AttributeError("object has no attribute '{}'".format(key))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
global_config = AttrDict()
|
|
|
|
|
|
2020-07-11 12:14:05 +08:00
|
|
|
|
default_config = {'Global': {'debug': False, }}
|
|
|
|
|
|
2020-05-10 16:26:57 +08:00
|
|
|
|
|
|
|
|
|
def load_config(file_path):
|
|
|
|
|
"""
|
|
|
|
|
Load config from yml/yaml file.
|
|
|
|
|
Args:
|
|
|
|
|
file_path (str): Path of the config file to be loaded.
|
|
|
|
|
Returns: global config
|
|
|
|
|
"""
|
2020-07-11 12:14:05 +08:00
|
|
|
|
merge_config(default_config)
|
2020-05-10 16:26:57 +08:00
|
|
|
|
_, ext = os.path.splitext(file_path)
|
|
|
|
|
assert ext in ['.yml', '.yaml'], "only support yaml files for now"
|
2020-10-13 17:13:33 +08:00
|
|
|
|
merge_config(yaml.load(open(file_path, 'rb'), Loader=yaml.Loader))
|
2020-05-10 16:26:57 +08:00
|
|
|
|
return global_config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def merge_config(config):
|
|
|
|
|
"""
|
|
|
|
|
Merge config into global config.
|
|
|
|
|
Args:
|
|
|
|
|
config (dict): Config to be merged.
|
|
|
|
|
Returns: global config
|
|
|
|
|
"""
|
|
|
|
|
for key, value in config.items():
|
|
|
|
|
if "." not in key:
|
|
|
|
|
if isinstance(value, dict) and key in global_config:
|
|
|
|
|
global_config[key].update(value)
|
|
|
|
|
else:
|
|
|
|
|
global_config[key] = value
|
|
|
|
|
else:
|
|
|
|
|
sub_keys = key.split('.')
|
2020-06-17 16:11:29 +08:00
|
|
|
|
assert (
|
|
|
|
|
sub_keys[0] in global_config
|
|
|
|
|
), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
|
|
|
|
|
global_config.keys(), sub_keys[0])
|
2020-05-10 16:26:57 +08:00
|
|
|
|
cur = global_config[sub_keys[0]]
|
|
|
|
|
for idx, sub_key in enumerate(sub_keys[1:]):
|
|
|
|
|
if idx == len(sub_keys) - 2:
|
|
|
|
|
cur[sub_key] = value
|
|
|
|
|
else:
|
|
|
|
|
cur = cur[sub_key]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def check_gpu(use_gpu):
|
|
|
|
|
"""
|
|
|
|
|
Log error and exit when set use_gpu=true in paddlepaddle
|
|
|
|
|
cpu version.
|
|
|
|
|
"""
|
|
|
|
|
err = "Config use_gpu cannot be set as true while you are " \
|
|
|
|
|
"using paddlepaddle cpu version ! \nPlease try: \n" \
|
|
|
|
|
"\t1. Install paddlepaddle-gpu to run model on GPU \n" \
|
|
|
|
|
"\t2. Set use_gpu as false in config file to run " \
|
|
|
|
|
"model on CPU"
|
|
|
|
|
|
|
|
|
|
try:
|
2020-12-21 17:13:32 +08:00
|
|
|
|
if use_gpu and not paddle.is_compiled_with_cuda():
|
2020-10-13 17:13:33 +08:00
|
|
|
|
print(err)
|
2020-05-10 16:26:57 +08:00
|
|
|
|
sys.exit(1)
|
|
|
|
|
except Exception as e:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
2020-10-13 17:13:33 +08:00
|
|
|
|
def train(config,
|
2020-11-04 20:43:27 +08:00
|
|
|
|
train_dataloader,
|
|
|
|
|
valid_dataloader,
|
|
|
|
|
device,
|
2020-10-13 17:13:33 +08:00
|
|
|
|
model,
|
|
|
|
|
loss_class,
|
|
|
|
|
optimizer,
|
|
|
|
|
lr_scheduler,
|
|
|
|
|
post_process_class,
|
|
|
|
|
eval_class,
|
|
|
|
|
pre_best_model_dict,
|
|
|
|
|
logger,
|
|
|
|
|
vdl_writer=None):
|
|
|
|
|
cal_metric_during_train = config['Global'].get('cal_metric_during_train',
|
|
|
|
|
False)
|
2020-05-10 16:26:57 +08:00
|
|
|
|
log_smooth_window = config['Global']['log_smooth_window']
|
|
|
|
|
epoch_num = config['Global']['epoch_num']
|
|
|
|
|
print_batch_step = config['Global']['print_batch_step']
|
|
|
|
|
eval_batch_step = config['Global']['eval_batch_step']
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
2020-11-04 20:43:27 +08:00
|
|
|
|
global_step = 0
|
2021-04-27 10:13:21 +08:00
|
|
|
|
if 'global_step' in pre_best_model_dict:
|
|
|
|
|
global_step = pre_best_model_dict['global_step']
|
2020-07-07 10:35:17 +08:00
|
|
|
|
start_eval_step = 0
|
|
|
|
|
if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
|
|
|
|
|
start_eval_step = eval_batch_step[0]
|
|
|
|
|
eval_batch_step = eval_batch_step[1]
|
2021-02-04 11:33:48 +08:00
|
|
|
|
if len(valid_dataloader) == 0:
|
|
|
|
|
logger.info(
|
|
|
|
|
'No Images in eval dataset, evaluation during training will be disabled'
|
|
|
|
|
)
|
|
|
|
|
start_eval_step = 1e111
|
2020-07-07 10:35:17 +08:00
|
|
|
|
logger.info(
|
|
|
|
|
"During the training process, after the {}th iteration, an evaluation is run every {} iterations".
|
|
|
|
|
format(start_eval_step, eval_batch_step))
|
2020-05-10 16:26:57 +08:00
|
|
|
|
save_epoch_step = config['Global']['save_epoch_step']
|
|
|
|
|
save_model_dir = config['Global']['save_model_dir']
|
2020-05-13 16:05:00 +08:00
|
|
|
|
if not os.path.exists(save_model_dir):
|
|
|
|
|
os.makedirs(save_model_dir)
|
2020-10-13 17:13:33 +08:00
|
|
|
|
main_indicator = eval_class.main_indicator
|
|
|
|
|
best_model_dict = {main_indicator: 0}
|
|
|
|
|
best_model_dict.update(pre_best_model_dict)
|
|
|
|
|
train_stats = TrainingStats(log_smooth_window, ['lr'])
|
2021-01-22 11:15:56 +08:00
|
|
|
|
model_average = False
|
2020-10-13 17:13:33 +08:00
|
|
|
|
model.train()
|
|
|
|
|
|
2021-02-07 15:31:24 +08:00
|
|
|
|
use_srn = config['Architecture']['algorithm'] == "SRN"
|
|
|
|
|
|
2020-10-13 17:13:33 +08:00
|
|
|
|
if 'start_epoch' in best_model_dict:
|
|
|
|
|
start_epoch = best_model_dict['start_epoch']
|
|
|
|
|
else:
|
2020-12-30 19:54:16 +08:00
|
|
|
|
start_epoch = 1
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
2020-12-30 19:54:16 +08:00
|
|
|
|
for epoch in range(start_epoch, epoch_num + 1):
|
2021-01-24 20:32:22 +08:00
|
|
|
|
train_dataloader = build_dataloader(
|
|
|
|
|
config, 'Train', device, logger, seed=epoch)
|
2020-11-16 19:00:27 +08:00
|
|
|
|
train_batch_cost = 0.0
|
|
|
|
|
train_reader_cost = 0.0
|
|
|
|
|
batch_sum = 0
|
|
|
|
|
batch_start = time.time()
|
2021-04-29 12:37:05 +08:00
|
|
|
|
max_iter = len(train_dataloader) - 1 if platform.system(
|
|
|
|
|
) == "Windows" else len(train_dataloader)
|
|
|
|
|
for idx, batch in enumerate(train_dataloader):
|
2020-11-16 19:00:27 +08:00
|
|
|
|
train_reader_cost += time.time() - batch_start
|
2021-04-29 12:37:05 +08:00
|
|
|
|
if idx >= max_iter:
|
|
|
|
|
break
|
2020-10-13 17:13:33 +08:00
|
|
|
|
lr = optimizer.get_lr()
|
|
|
|
|
images = batch[0]
|
2021-02-07 15:31:24 +08:00
|
|
|
|
if use_srn:
|
2020-12-30 16:15:49 +08:00
|
|
|
|
others = batch[-4:]
|
|
|
|
|
preds = model(images, others)
|
2021-01-22 11:15:56 +08:00
|
|
|
|
model_average = True
|
2020-12-30 16:15:49 +08:00
|
|
|
|
else:
|
|
|
|
|
preds = model(images)
|
2020-10-13 17:13:33 +08:00
|
|
|
|
loss = loss_class(preds, batch)
|
|
|
|
|
avg_loss = loss['loss']
|
2020-11-05 15:13:36 +08:00
|
|
|
|
avg_loss.backward()
|
2020-10-13 17:13:33 +08:00
|
|
|
|
optimizer.step()
|
|
|
|
|
optimizer.clear_grad()
|
2020-11-16 19:00:27 +08:00
|
|
|
|
|
|
|
|
|
train_batch_cost += time.time() - batch_start
|
|
|
|
|
batch_sum += len(images)
|
|
|
|
|
|
2020-11-04 20:43:27 +08:00
|
|
|
|
if not isinstance(lr_scheduler, float):
|
|
|
|
|
lr_scheduler.step()
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
|
|
|
|
# logger and visualdl
|
|
|
|
|
stats = {k: v.numpy().mean() for k, v in loss.items()}
|
|
|
|
|
stats['lr'] = lr
|
|
|
|
|
train_stats.update(stats)
|
|
|
|
|
|
2021-01-26 15:16:02 +08:00
|
|
|
|
if cal_metric_during_train: # only rec and cls need
|
2020-10-13 17:13:33 +08:00
|
|
|
|
batch = [item.numpy() for item in batch]
|
|
|
|
|
post_result = post_process_class(preds, batch[1])
|
|
|
|
|
eval_class(post_result, batch)
|
2021-02-01 22:03:32 +08:00
|
|
|
|
metric = eval_class.get_metric()
|
|
|
|
|
train_stats.update(metric)
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
|
|
|
|
if vdl_writer is not None and dist.get_rank() == 0:
|
|
|
|
|
for k, v in train_stats.get().items():
|
|
|
|
|
vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
|
|
|
|
|
vdl_writer.add_scalar('TRAIN/lr', lr, global_step)
|
|
|
|
|
|
2021-03-24 14:32:38 +08:00
|
|
|
|
if dist.get_rank() == 0 and (
|
|
|
|
|
(global_step > 0 and global_step % print_batch_step == 0) or
|
|
|
|
|
(idx >= len(train_dataloader) - 1)):
|
2020-10-13 17:13:33 +08:00
|
|
|
|
logs = train_stats.log()
|
2020-11-16 19:02:00 +08:00
|
|
|
|
strs = 'epoch: [{}/{}], iter: {}, {}, reader_cost: {:.5f} s, batch_cost: {:.5f} s, samples: {}, ips: {:.5f}'.format(
|
2020-11-16 19:00:27 +08:00
|
|
|
|
epoch, epoch_num, global_step, logs, train_reader_cost /
|
|
|
|
|
print_batch_step, train_batch_cost / print_batch_step,
|
|
|
|
|
batch_sum, batch_sum / train_batch_cost)
|
2020-10-13 17:13:33 +08:00
|
|
|
|
logger.info(strs)
|
2020-11-16 19:00:27 +08:00
|
|
|
|
train_batch_cost = 0.0
|
|
|
|
|
train_reader_cost = 0.0
|
|
|
|
|
batch_sum = 0
|
2020-10-13 17:13:33 +08:00
|
|
|
|
# eval
|
|
|
|
|
if global_step > start_eval_step and \
|
|
|
|
|
(global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0:
|
2021-01-22 11:15:56 +08:00
|
|
|
|
if model_average:
|
|
|
|
|
Model_Average = paddle.incubate.optimizer.ModelAverage(
|
|
|
|
|
0.15,
|
|
|
|
|
parameters=model.parameters(),
|
|
|
|
|
min_average_window=10000,
|
|
|
|
|
max_average_window=15625)
|
|
|
|
|
Model_Average.apply()
|
2021-02-07 15:31:24 +08:00
|
|
|
|
cur_metric = eval(
|
|
|
|
|
model,
|
|
|
|
|
valid_dataloader,
|
|
|
|
|
post_process_class,
|
|
|
|
|
eval_class,
|
|
|
|
|
use_srn=use_srn)
|
2021-01-26 15:16:02 +08:00
|
|
|
|
cur_metric_str = 'cur metric, {}'.format(', '.join(
|
|
|
|
|
['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
|
|
|
|
|
logger.info(cur_metric_str)
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
|
|
|
|
# logger metric
|
|
|
|
|
if vdl_writer is not None:
|
2021-01-26 15:16:02 +08:00
|
|
|
|
for k, v in cur_metric.items():
|
2020-10-13 17:13:33 +08:00
|
|
|
|
if isinstance(v, (float, int)):
|
|
|
|
|
vdl_writer.add_scalar('EVAL/{}'.format(k),
|
2021-01-26 15:16:02 +08:00
|
|
|
|
cur_metric[k], global_step)
|
|
|
|
|
if cur_metric[main_indicator] >= best_model_dict[
|
2020-10-13 17:13:33 +08:00
|
|
|
|
main_indicator]:
|
2021-01-26 15:16:02 +08:00
|
|
|
|
best_model_dict.update(cur_metric)
|
2020-10-13 17:13:33 +08:00
|
|
|
|
best_model_dict['best_epoch'] = epoch
|
|
|
|
|
save_model(
|
|
|
|
|
model,
|
|
|
|
|
optimizer,
|
|
|
|
|
save_model_dir,
|
|
|
|
|
logger,
|
|
|
|
|
is_best=True,
|
|
|
|
|
prefix='best_accuracy',
|
|
|
|
|
best_model_dict=best_model_dict,
|
2021-04-27 10:13:21 +08:00
|
|
|
|
epoch=epoch,
|
|
|
|
|
global_step=global_step)
|
2021-01-26 15:16:02 +08:00
|
|
|
|
best_str = 'best metric, {}'.format(', '.join([
|
2020-10-13 17:13:33 +08:00
|
|
|
|
'{}: {}'.format(k, v) for k, v in best_model_dict.items()
|
|
|
|
|
]))
|
|
|
|
|
logger.info(best_str)
|
|
|
|
|
# logger best metric
|
|
|
|
|
if vdl_writer is not None:
|
|
|
|
|
vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
|
|
|
|
|
best_model_dict[main_indicator],
|
|
|
|
|
global_step)
|
|
|
|
|
global_step += 1
|
2021-01-19 14:48:52 +08:00
|
|
|
|
optimizer.clear_grad()
|
2020-11-24 15:47:12 +08:00
|
|
|
|
batch_start = time.time()
|
2020-10-13 17:13:33 +08:00
|
|
|
|
if dist.get_rank() == 0:
|
|
|
|
|
save_model(
|
|
|
|
|
model,
|
|
|
|
|
optimizer,
|
|
|
|
|
save_model_dir,
|
|
|
|
|
logger,
|
|
|
|
|
is_best=False,
|
|
|
|
|
prefix='latest',
|
|
|
|
|
best_model_dict=best_model_dict,
|
2021-04-27 10:13:21 +08:00
|
|
|
|
epoch=epoch,
|
|
|
|
|
global_step=global_step)
|
2020-10-13 17:13:33 +08:00
|
|
|
|
if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
|
|
|
|
|
save_model(
|
|
|
|
|
model,
|
|
|
|
|
optimizer,
|
|
|
|
|
save_model_dir,
|
|
|
|
|
logger,
|
|
|
|
|
is_best=False,
|
|
|
|
|
prefix='iter_epoch_{}'.format(epoch),
|
|
|
|
|
best_model_dict=best_model_dict,
|
2021-04-27 10:13:21 +08:00
|
|
|
|
epoch=epoch,
|
|
|
|
|
global_step=global_step)
|
2021-01-26 15:16:02 +08:00
|
|
|
|
best_str = 'best metric, {}'.format(', '.join(
|
2020-10-13 17:13:33 +08:00
|
|
|
|
['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
|
|
|
|
|
logger.info(best_str)
|
|
|
|
|
if dist.get_rank() == 0 and vdl_writer is not None:
|
|
|
|
|
vdl_writer.close()
|
2020-05-10 16:26:57 +08:00
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
2021-02-07 15:31:24 +08:00
|
|
|
|
def eval(model, valid_dataloader, post_process_class, eval_class,
|
|
|
|
|
use_srn=False):
|
2020-10-13 17:13:33 +08:00
|
|
|
|
model.eval()
|
|
|
|
|
with paddle.no_grad():
|
|
|
|
|
total_frame = 0.0
|
|
|
|
|
total_time = 0.0
|
2020-11-06 18:56:53 +08:00
|
|
|
|
pbar = tqdm(total=len(valid_dataloader), desc='eval model:')
|
2021-04-27 10:32:17 +08:00
|
|
|
|
max_iter = len(valid_dataloader) - 1 if platform.system(
|
|
|
|
|
) == "Windows" else len(valid_dataloader)
|
2020-10-13 17:13:33 +08:00
|
|
|
|
for idx, batch in enumerate(valid_dataloader):
|
2021-04-27 10:32:17 +08:00
|
|
|
|
if idx >= max_iter:
|
2020-10-13 17:13:33 +08:00
|
|
|
|
break
|
2020-11-06 18:56:53 +08:00
|
|
|
|
images = batch[0]
|
2020-10-13 17:13:33 +08:00
|
|
|
|
start = time.time()
|
2021-02-07 15:31:24 +08:00
|
|
|
|
|
|
|
|
|
if use_srn:
|
2021-01-31 22:37:30 +08:00
|
|
|
|
others = batch[-4:]
|
|
|
|
|
preds = model(images, others)
|
|
|
|
|
else:
|
|
|
|
|
preds = model(images)
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
|
|
|
|
batch = [item.numpy() for item in batch]
|
|
|
|
|
# Obtain usable results from post-processing methods
|
|
|
|
|
post_result = post_process_class(preds, batch[1])
|
|
|
|
|
total_time += time.time() - start
|
|
|
|
|
# Evaluate the results of the current batch
|
|
|
|
|
eval_class(post_result, batch)
|
2020-11-06 18:56:53 +08:00
|
|
|
|
pbar.update(1)
|
2020-10-13 17:13:33 +08:00
|
|
|
|
total_frame += len(images)
|
2021-01-26 15:16:02 +08:00
|
|
|
|
# Get final metric,eg. acc or hmean
|
|
|
|
|
metric = eval_class.get_metric()
|
2020-11-05 15:13:36 +08:00
|
|
|
|
|
2020-11-06 18:56:53 +08:00
|
|
|
|
pbar.close()
|
2020-10-13 17:13:33 +08:00
|
|
|
|
model.train()
|
2021-01-26 15:16:02 +08:00
|
|
|
|
metric['fps'] = total_frame / total_time
|
|
|
|
|
return metric
|
2020-08-15 21:54:59 +08:00
|
|
|
|
|
2020-08-15 12:39:07 +08:00
|
|
|
|
|
2020-12-18 18:51:19 +08:00
|
|
|
|
def preprocess(is_train=False):
|
2020-08-15 21:54:59 +08:00
|
|
|
|
FLAGS = ArgsParser().parse_args()
|
|
|
|
|
config = load_config(FLAGS.config)
|
|
|
|
|
merge_config(FLAGS.opt)
|
|
|
|
|
|
|
|
|
|
# check if set use_gpu=True in paddlepaddle cpu version
|
|
|
|
|
use_gpu = config['Global']['use_gpu']
|
|
|
|
|
check_gpu(use_gpu)
|
|
|
|
|
|
2020-10-13 17:13:33 +08:00
|
|
|
|
alg = config['Architecture']['algorithm']
|
|
|
|
|
assert alg in [
|
2021-03-08 14:15:47 +08:00
|
|
|
|
'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
|
2021-03-10 14:14:21 +08:00
|
|
|
|
'CLS', 'PGNet'
|
2020-10-13 17:13:33 +08:00
|
|
|
|
]
|
2020-08-15 21:54:59 +08:00
|
|
|
|
|
2020-10-13 17:13:33 +08:00
|
|
|
|
device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
|
|
|
|
|
device = paddle.set_device(device)
|
2020-11-05 15:13:36 +08:00
|
|
|
|
|
2020-11-04 20:43:27 +08:00
|
|
|
|
config['Global']['distributed'] = dist.get_world_size() != 1
|
2020-12-18 18:51:19 +08:00
|
|
|
|
if is_train:
|
|
|
|
|
# save_config
|
|
|
|
|
save_model_dir = config['Global']['save_model_dir']
|
|
|
|
|
os.makedirs(save_model_dir, exist_ok=True)
|
|
|
|
|
with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
|
|
|
|
|
yaml.dump(
|
|
|
|
|
dict(config), f, default_flow_style=False, sort_keys=False)
|
|
|
|
|
log_file = '{}/train.log'.format(save_model_dir)
|
|
|
|
|
else:
|
|
|
|
|
log_file = None
|
|
|
|
|
logger = get_logger(name='root', log_file=log_file)
|
2020-11-04 20:43:27 +08:00
|
|
|
|
if config['Global']['use_visualdl']:
|
|
|
|
|
from visualdl import LogWriter
|
2021-02-02 21:27:48 +08:00
|
|
|
|
save_model_dir = config['Global']['save_model_dir']
|
2020-11-04 20:43:27 +08:00
|
|
|
|
vdl_writer_path = '{}/vdl/'.format(save_model_dir)
|
|
|
|
|
os.makedirs(vdl_writer_path, exist_ok=True)
|
|
|
|
|
vdl_writer = LogWriter(logdir=vdl_writer_path)
|
|
|
|
|
else:
|
|
|
|
|
vdl_writer = None
|
|
|
|
|
print_dict(config, logger)
|
|
|
|
|
logger.info('train with paddle {} and device {}'.format(paddle.__version__,
|
|
|
|
|
device))
|
|
|
|
|
return config, device, logger, vdl_writer
|