2020-10-13 17:13:33 +08:00
|
|
|
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
2020-05-10 16:26:57 +08:00
|
|
|
#
|
2020-10-13 17:13:33 +08:00
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
2020-05-10 16:26:57 +08:00
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
2020-10-13 17:13:33 +08:00
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
2020-05-10 16:26:57 +08:00
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
2020-10-13 17:13:33 +08:00
|
|
|
from paddle import nn
|
|
|
|
from paddle.nn import functional as F
|
|
|
|
from paddle import ParamAttr
|
2020-05-10 16:26:57 +08:00
|
|
|
|
|
|
|
__all__ = ["ResNet"]
|
|
|
|
|
|
|
|
|
2020-10-13 17:13:33 +08:00
|
|
|
class ResNet(nn.Layer):
|
|
|
|
def __init__(self, in_channels=3, layers=50, **kwargs):
|
2020-05-10 16:26:57 +08:00
|
|
|
"""
|
|
|
|
the Resnet backbone network for detection module.
|
|
|
|
Args:
|
|
|
|
params(dict): the super parameters for network build
|
|
|
|
"""
|
2020-10-13 17:13:33 +08:00
|
|
|
super(ResNet, self).__init__()
|
|
|
|
supported_layers = {
|
|
|
|
18: {
|
|
|
|
'depth': [2, 2, 2, 2],
|
|
|
|
'block_class': BasicBlock
|
|
|
|
},
|
|
|
|
34: {
|
|
|
|
'depth': [3, 4, 6, 3],
|
|
|
|
'block_class': BasicBlock
|
|
|
|
},
|
|
|
|
50: {
|
|
|
|
'depth': [3, 4, 6, 3],
|
|
|
|
'block_class': BottleneckBlock
|
|
|
|
},
|
|
|
|
101: {
|
|
|
|
'depth': [3, 4, 23, 3],
|
|
|
|
'block_class': BottleneckBlock
|
|
|
|
},
|
|
|
|
152: {
|
|
|
|
'depth': [3, 8, 36, 3],
|
|
|
|
'block_class': BottleneckBlock
|
|
|
|
},
|
|
|
|
200: {
|
|
|
|
'depth': [3, 12, 48, 3],
|
|
|
|
'block_class': BottleneckBlock
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert layers in supported_layers, \
|
|
|
|
"supported layers are {} but input layer is {}".format(supported_layers.keys(), layers)
|
|
|
|
is_3x3 = True
|
|
|
|
|
|
|
|
depth = supported_layers[layers]['depth']
|
|
|
|
block_class = supported_layers[layers]['block_class']
|
|
|
|
|
2020-05-10 16:26:57 +08:00
|
|
|
num_filters = [64, 128, 256, 512]
|
|
|
|
|
2020-10-13 17:13:33 +08:00
|
|
|
conv = []
|
2020-05-10 16:26:57 +08:00
|
|
|
if is_3x3 == False:
|
2020-10-13 17:13:33 +08:00
|
|
|
conv.append(
|
|
|
|
ConvBNLayer(
|
|
|
|
in_channels=in_channels,
|
|
|
|
out_channels=64,
|
|
|
|
kernel_size=7,
|
|
|
|
stride=2,
|
|
|
|
act='relu'))
|
2020-05-10 16:26:57 +08:00
|
|
|
else:
|
2020-10-13 17:13:33 +08:00
|
|
|
conv.append(
|
|
|
|
ConvBNLayer(
|
|
|
|
in_channels=3,
|
|
|
|
out_channels=32,
|
|
|
|
kernel_size=3,
|
|
|
|
stride=2,
|
|
|
|
act='relu',
|
|
|
|
name='conv1_1'))
|
|
|
|
conv.append(
|
|
|
|
ConvBNLayer(
|
|
|
|
in_channels=32,
|
|
|
|
out_channels=32,
|
|
|
|
kernel_size=3,
|
|
|
|
stride=1,
|
|
|
|
act='relu',
|
|
|
|
name='conv1_2'))
|
|
|
|
conv.append(
|
|
|
|
ConvBNLayer(
|
|
|
|
in_channels=32,
|
|
|
|
out_channels=64,
|
|
|
|
kernel_size=3,
|
|
|
|
stride=1,
|
|
|
|
act='relu',
|
|
|
|
name='conv1_3'))
|
|
|
|
self.conv1 = nn.Sequential(*conv)
|
|
|
|
self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
|
|
self.stages = []
|
|
|
|
self.out_channels = []
|
|
|
|
in_ch = 64
|
|
|
|
for block_index in range(len(depth)):
|
|
|
|
block_list = []
|
|
|
|
for i in range(depth[block_index]):
|
|
|
|
if layers >= 50:
|
|
|
|
if layers in [101, 152, 200] and block_index == 2:
|
2020-05-10 16:26:57 +08:00
|
|
|
if i == 0:
|
2020-10-13 17:13:33 +08:00
|
|
|
conv_name = "res" + str(block_index + 2) + "a"
|
2020-05-10 16:26:57 +08:00
|
|
|
else:
|
2020-10-13 17:13:33 +08:00
|
|
|
conv_name = "res" + str(block_index +
|
|
|
|
2) + "b" + str(i)
|
2020-05-10 16:26:57 +08:00
|
|
|
else:
|
2020-10-13 17:13:33 +08:00
|
|
|
conv_name = "res" + str(block_index + 2) + chr(97 + i)
|
|
|
|
else:
|
|
|
|
conv_name = "res" + str(block_index + 2) + chr(97 + i)
|
|
|
|
block_list.append(
|
|
|
|
block_class(
|
|
|
|
in_channels=in_ch,
|
|
|
|
out_channels=num_filters[block_index],
|
|
|
|
stride=2 if i == 0 and block_index != 0 else 1,
|
|
|
|
if_first=block_index == i == 0,
|
|
|
|
name=conv_name))
|
|
|
|
in_ch = block_list[-1].out_channels
|
|
|
|
self.out_channels.append(in_ch)
|
|
|
|
self.stages.append(nn.Sequential(*block_list))
|
|
|
|
for i, stage in enumerate(self.stages):
|
|
|
|
self.add_sublayer(sublayer=stage, name="stage{}".format(i))
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.pool(x)
|
|
|
|
out_list = []
|
|
|
|
for stage in self.stages:
|
|
|
|
x = stage(x)
|
|
|
|
out_list.append(x)
|
|
|
|
return out_list
|
|
|
|
|
|
|
|
|
|
|
|
class ConvBNLayer(nn.Layer):
|
|
|
|
def __init__(self,
|
|
|
|
in_channels,
|
|
|
|
out_channels,
|
|
|
|
kernel_size,
|
|
|
|
stride=1,
|
|
|
|
groups=1,
|
|
|
|
act=None,
|
|
|
|
name=None):
|
|
|
|
super(ConvBNLayer, self).__init__()
|
|
|
|
self.conv = nn.Conv2d(
|
|
|
|
in_channels=in_channels,
|
|
|
|
out_channels=out_channels,
|
|
|
|
kernel_size=kernel_size,
|
2020-05-10 16:26:57 +08:00
|
|
|
stride=stride,
|
2020-10-13 17:13:33 +08:00
|
|
|
padding=(kernel_size - 1) // 2,
|
2020-05-10 16:26:57 +08:00
|
|
|
groups=groups,
|
2020-10-13 17:13:33 +08:00
|
|
|
weight_attr=ParamAttr(name=name + "_weights"),
|
2020-05-10 16:26:57 +08:00
|
|
|
bias_attr=False)
|
|
|
|
if name == "conv1":
|
|
|
|
bn_name = "bn_" + name
|
|
|
|
else:
|
|
|
|
bn_name = "bn" + name[3:]
|
2020-10-13 17:13:33 +08:00
|
|
|
self.bn = nn.BatchNorm(
|
|
|
|
num_channels=out_channels,
|
2020-05-10 16:26:57 +08:00
|
|
|
act=act,
|
2020-10-13 17:13:33 +08:00
|
|
|
param_attr=ParamAttr(name=bn_name + "_scale"),
|
|
|
|
bias_attr=ParamAttr(name=bn_name + "_offset"),
|
|
|
|
moving_mean_name=bn_name + "_mean",
|
|
|
|
moving_variance_name=bn_name + "_variance")
|
|
|
|
|
|
|
|
def __call__(self, x):
|
|
|
|
x = self.conv(x)
|
|
|
|
x = self.bn(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class ConvBNLayerNew(nn.Layer):
|
|
|
|
def __init__(self,
|
|
|
|
in_channels,
|
|
|
|
out_channels,
|
|
|
|
kernel_size,
|
|
|
|
stride=1,
|
|
|
|
groups=1,
|
|
|
|
act=None,
|
|
|
|
name=None):
|
|
|
|
super(ConvBNLayerNew, self).__init__()
|
|
|
|
self.pool = nn.AvgPool2d(
|
|
|
|
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
|
|
|
|
|
|
|
self.conv = nn.Conv2d(
|
|
|
|
in_channels=in_channels,
|
|
|
|
out_channels=out_channels,
|
|
|
|
kernel_size=kernel_size,
|
2020-05-10 16:26:57 +08:00
|
|
|
stride=1,
|
2020-10-13 17:13:33 +08:00
|
|
|
padding=(kernel_size - 1) // 2,
|
2020-05-10 16:26:57 +08:00
|
|
|
groups=groups,
|
2020-10-13 17:13:33 +08:00
|
|
|
weight_attr=ParamAttr(name=name + "_weights"),
|
2020-05-10 16:26:57 +08:00
|
|
|
bias_attr=False)
|
|
|
|
if name == "conv1":
|
|
|
|
bn_name = "bn_" + name
|
|
|
|
else:
|
|
|
|
bn_name = "bn" + name[3:]
|
2020-10-13 17:13:33 +08:00
|
|
|
self.bn = nn.BatchNorm(
|
|
|
|
num_channels=out_channels,
|
2020-05-10 16:26:57 +08:00
|
|
|
act=act,
|
2020-10-13 17:13:33 +08:00
|
|
|
param_attr=ParamAttr(name=bn_name + "_scale"),
|
|
|
|
bias_attr=ParamAttr(name=bn_name + "_offset"),
|
|
|
|
moving_mean_name=bn_name + "_mean",
|
|
|
|
moving_variance_name=bn_name + "_variance")
|
|
|
|
|
|
|
|
def __call__(self, x):
|
|
|
|
x = self.pool(x)
|
|
|
|
x = self.conv(x)
|
|
|
|
x = self.bn(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class ShortCut(nn.Layer):
|
|
|
|
def __init__(self, in_channels, out_channels, stride, name, if_first=False):
|
|
|
|
super(ShortCut, self).__init__()
|
|
|
|
self.use_conv = True
|
|
|
|
if in_channels != out_channels or stride != 1:
|
2020-05-10 16:26:57 +08:00
|
|
|
if if_first:
|
2020-10-13 17:13:33 +08:00
|
|
|
self.conv = ConvBNLayer(
|
|
|
|
in_channels, out_channels, 1, stride, name=name)
|
2020-05-10 16:26:57 +08:00
|
|
|
else:
|
2020-10-13 17:13:33 +08:00
|
|
|
self.conv = ConvBNLayerNew(
|
|
|
|
in_channels, out_channels, 1, stride, name=name)
|
2020-05-10 16:26:57 +08:00
|
|
|
elif if_first:
|
2020-10-13 17:13:33 +08:00
|
|
|
self.conv = ConvBNLayer(
|
|
|
|
in_channels, out_channels, 1, stride, name=name)
|
2020-05-10 16:26:57 +08:00
|
|
|
else:
|
2020-10-13 17:13:33 +08:00
|
|
|
self.use_conv = False
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
if self.use_conv:
|
|
|
|
x = self.conv(x)
|
|
|
|
return x
|
2020-05-10 16:26:57 +08:00
|
|
|
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
|
|
class BottleneckBlock(nn.Layer):
|
|
|
|
def __init__(self, in_channels, out_channels, stride, name, if_first):
|
|
|
|
super(BottleneckBlock, self).__init__()
|
|
|
|
self.conv0 = ConvBNLayer(
|
|
|
|
in_channels=in_channels,
|
|
|
|
out_channels=out_channels,
|
|
|
|
kernel_size=1,
|
2020-05-10 16:26:57 +08:00
|
|
|
act='relu',
|
|
|
|
name=name + "_branch2a")
|
2020-10-13 17:13:33 +08:00
|
|
|
self.conv1 = ConvBNLayer(
|
|
|
|
in_channels=out_channels,
|
|
|
|
out_channels=out_channels,
|
|
|
|
kernel_size=3,
|
2020-05-10 16:26:57 +08:00
|
|
|
stride=stride,
|
|
|
|
act='relu',
|
|
|
|
name=name + "_branch2b")
|
2020-10-13 17:13:33 +08:00
|
|
|
self.conv2 = ConvBNLayer(
|
|
|
|
in_channels=out_channels,
|
|
|
|
out_channels=out_channels * 4,
|
|
|
|
kernel_size=1,
|
2020-05-10 16:26:57 +08:00
|
|
|
act=None,
|
|
|
|
name=name + "_branch2c")
|
|
|
|
|
2020-10-13 17:13:33 +08:00
|
|
|
self.short = ShortCut(
|
|
|
|
in_channels=in_channels,
|
|
|
|
out_channels=out_channels * 4,
|
|
|
|
stride=stride,
|
2020-05-10 16:26:57 +08:00
|
|
|
if_first=if_first,
|
|
|
|
name=name + "_branch1")
|
2020-10-13 17:13:33 +08:00
|
|
|
self.out_channels = out_channels * 4
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
y = self.conv0(x)
|
|
|
|
y = self.conv1(y)
|
|
|
|
y = self.conv2(y)
|
|
|
|
y = y + self.short(x)
|
|
|
|
y = F.relu(y)
|
|
|
|
return y
|
2020-05-10 16:26:57 +08:00
|
|
|
|
|
|
|
|
2020-10-13 17:13:33 +08:00
|
|
|
class BasicBlock(nn.Layer):
|
|
|
|
def __init__(self, in_channels, out_channels, stride, name, if_first):
|
|
|
|
super(BasicBlock, self).__init__()
|
|
|
|
self.conv0 = ConvBNLayer(
|
|
|
|
in_channels=in_channels,
|
|
|
|
out_channels=out_channels,
|
|
|
|
kernel_size=3,
|
2020-05-10 16:26:57 +08:00
|
|
|
act='relu',
|
|
|
|
stride=stride,
|
|
|
|
name=name + "_branch2a")
|
2020-10-13 17:13:33 +08:00
|
|
|
self.conv1 = ConvBNLayer(
|
|
|
|
in_channels=out_channels,
|
|
|
|
out_channels=out_channels,
|
|
|
|
kernel_size=3,
|
2020-05-10 16:26:57 +08:00
|
|
|
act=None,
|
|
|
|
name=name + "_branch2b")
|
2020-10-13 17:13:33 +08:00
|
|
|
self.short = ShortCut(
|
|
|
|
in_channels=in_channels,
|
|
|
|
out_channels=out_channels,
|
|
|
|
stride=stride,
|
2020-05-10 16:26:57 +08:00
|
|
|
if_first=if_first,
|
|
|
|
name=name + "_branch1")
|
2020-10-13 17:13:33 +08:00
|
|
|
self.out_channels = out_channels
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
y = self.conv0(x)
|
|
|
|
y = self.conv1(y)
|
|
|
|
y = y + self.short(x)
|
|
|
|
return F.relu(y)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
paddle.disable_static()
|
|
|
|
x = paddle.zeros([1, 3, 640, 640])
|
|
|
|
x = paddle.to_variable(x)
|
|
|
|
print(x.shape)
|
|
|
|
net = ResNet(layers=18)
|
|
|
|
y = net(x)
|
|
|
|
|
|
|
|
for stage in y:
|
|
|
|
print(stage.shape)
|
|
|
|
# paddle.save(net.state_dict(),'1.pth')
|