2020-05-10 16:26:57 +08:00
|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import utility
|
|
|
|
from ppocr.utils.utility import initial_logger
|
|
|
|
logger = initial_logger()
|
|
|
|
import cv2
|
|
|
|
from ppocr.data.det.east_process import EASTProcessTest
|
|
|
|
from ppocr.data.det.db_process import DBProcessTest
|
|
|
|
from ppocr.postprocess.db_postprocess import DBPostProcess
|
|
|
|
from ppocr.postprocess.east_postprocess import EASTPostPocess
|
|
|
|
import copy
|
|
|
|
import numpy as np
|
|
|
|
import math
|
|
|
|
import time
|
2020-05-13 16:05:00 +08:00
|
|
|
import sys
|
2020-05-10 16:26:57 +08:00
|
|
|
|
|
|
|
|
|
|
|
class TextDetector(object):
|
|
|
|
def __init__(self, args):
|
|
|
|
max_side_len = args.det_max_side_len
|
|
|
|
self.det_algorithm = args.det_algorithm
|
|
|
|
preprocess_params = {'max_side_len': max_side_len}
|
|
|
|
postprocess_params = {}
|
|
|
|
if self.det_algorithm == "DB":
|
|
|
|
self.preprocess_op = DBProcessTest(preprocess_params)
|
|
|
|
postprocess_params["thresh"] = args.det_db_thresh
|
|
|
|
postprocess_params["box_thresh"] = args.det_db_box_thresh
|
|
|
|
postprocess_params["max_candidates"] = 1000
|
|
|
|
self.postprocess_op = DBPostProcess(postprocess_params)
|
|
|
|
elif self.det_algorithm == "EAST":
|
|
|
|
self.preprocess_op = EASTProcessTest(preprocess_params)
|
|
|
|
postprocess_params["score_thresh"] = args.det_east_score_thresh
|
|
|
|
postprocess_params["cover_thresh"] = args.det_east_cover_thresh
|
|
|
|
postprocess_params["nms_thresh"] = args.det_east_nms_thresh
|
|
|
|
self.postprocess_op = EASTPostPocess(postprocess_params)
|
|
|
|
else:
|
|
|
|
logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
|
|
|
|
sys.exit(0)
|
|
|
|
|
|
|
|
self.predictor, self.input_tensor, self.output_tensors =\
|
|
|
|
utility.create_predictor(args, mode="det")
|
|
|
|
|
|
|
|
def order_points_clockwise(self, pts):
|
2020-05-13 16:05:00 +08:00
|
|
|
"""
|
|
|
|
reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
|
2020-05-10 16:26:57 +08:00
|
|
|
# sort the points based on their x-coordinates
|
2020-05-13 16:05:00 +08:00
|
|
|
"""
|
2020-05-10 16:26:57 +08:00
|
|
|
xSorted = pts[np.argsort(pts[:, 0]), :]
|
|
|
|
|
|
|
|
# grab the left-most and right-most points from the sorted
|
|
|
|
# x-roodinate points
|
|
|
|
leftMost = xSorted[:2, :]
|
|
|
|
rightMost = xSorted[2:, :]
|
|
|
|
|
|
|
|
# now, sort the left-most coordinates according to their
|
|
|
|
# y-coordinates so we can grab the top-left and bottom-left
|
|
|
|
# points, respectively
|
|
|
|
leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
|
|
|
|
(tl, bl) = leftMost
|
|
|
|
|
|
|
|
rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
|
|
|
|
(tr, br) = rightMost
|
|
|
|
|
|
|
|
rect = np.array([tl, tr, br, bl], dtype="float32")
|
|
|
|
return rect
|
|
|
|
|
|
|
|
def expand_det_res(self, points, bbox_height, bbox_width, img_height,
|
|
|
|
img_width):
|
|
|
|
if bbox_height * 1.0 / bbox_width >= 2.0:
|
|
|
|
expand_w = bbox_width * 0.20
|
|
|
|
expand_h = bbox_width * 0.20
|
|
|
|
elif bbox_width * 1.0 / bbox_height >= 3.0:
|
|
|
|
expand_w = bbox_height * 0.20
|
|
|
|
expand_h = bbox_height * 0.20
|
|
|
|
else:
|
|
|
|
expand_w = bbox_height * 0.1
|
|
|
|
expand_h = bbox_height * 0.1
|
|
|
|
|
|
|
|
points[0, 0] = int(max((points[0, 0] - expand_w), 0))
|
|
|
|
points[1, 0] = int(min((points[1, 0] + expand_w), img_width))
|
|
|
|
points[3, 0] = int(max((points[3, 0] - expand_w), 0))
|
|
|
|
points[2, 0] = int(min((points[2, 0] + expand_w), img_width))
|
|
|
|
|
|
|
|
points[0, 1] = int(max((points[0, 1] - expand_h), 0))
|
|
|
|
points[1, 1] = int(max((points[1, 1] - expand_h), 0))
|
|
|
|
points[3, 1] = int(min((points[3, 1] + expand_h), img_height))
|
|
|
|
points[2, 1] = int(min((points[2, 1] + expand_h), img_height))
|
|
|
|
return points
|
|
|
|
|
|
|
|
def filter_tag_det_res(self, dt_boxes, image_shape):
|
|
|
|
img_height, img_width = image_shape[0:2]
|
|
|
|
dt_boxes_new = []
|
|
|
|
for box in dt_boxes:
|
|
|
|
box = self.order_points_clockwise(box)
|
|
|
|
left = int(np.min(box[:, 0]))
|
|
|
|
right = int(np.max(box[:, 0]))
|
|
|
|
top = int(np.min(box[:, 1]))
|
|
|
|
bottom = int(np.max(box[:, 1]))
|
|
|
|
bbox_height = bottom - top
|
|
|
|
bbox_width = right - left
|
|
|
|
diffh = math.fabs(box[0, 1] - box[1, 1])
|
|
|
|
diffw = math.fabs(box[0, 0] - box[3, 0])
|
|
|
|
rect_width = int(np.linalg.norm(box[0] - box[1]))
|
|
|
|
rect_height = int(np.linalg.norm(box[0] - box[3]))
|
|
|
|
if rect_width <= 10 or rect_height <= 10:
|
|
|
|
continue
|
2020-05-13 21:29:54 +08:00
|
|
|
# if diffh <= 10 and diffw <= 10:
|
|
|
|
# box = self.expand_det_res(
|
|
|
|
# copy.deepcopy(box), bbox_height, bbox_width, img_height,
|
|
|
|
# img_width)
|
2020-05-10 16:26:57 +08:00
|
|
|
dt_boxes_new.append(box)
|
|
|
|
dt_boxes = np.array(dt_boxes_new)
|
|
|
|
return dt_boxes
|
|
|
|
|
|
|
|
def __call__(self, img):
|
|
|
|
ori_im = img.copy()
|
|
|
|
im, ratio_list = self.preprocess_op(img)
|
|
|
|
if im is None:
|
|
|
|
return None, 0
|
|
|
|
im = im.copy()
|
|
|
|
starttime = time.time()
|
|
|
|
self.input_tensor.copy_from_cpu(im)
|
|
|
|
self.predictor.zero_copy_run()
|
|
|
|
outputs = []
|
|
|
|
for output_tensor in self.output_tensors:
|
|
|
|
output = output_tensor.copy_to_cpu()
|
|
|
|
outputs.append(output)
|
|
|
|
outs_dict = {}
|
|
|
|
if self.det_algorithm == "EAST":
|
|
|
|
outs_dict['f_score'] = outputs[0]
|
|
|
|
outs_dict['f_geo'] = outputs[1]
|
|
|
|
else:
|
2020-05-13 16:05:00 +08:00
|
|
|
outs_dict['maps'] = outputs[0]
|
2020-05-10 16:26:57 +08:00
|
|
|
dt_boxes_list = self.postprocess_op(outs_dict, [ratio_list])
|
|
|
|
dt_boxes = dt_boxes_list[0]
|
|
|
|
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
|
|
|
|
elapse = time.time() - starttime
|
|
|
|
return dt_boxes, elapse
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
args = utility.parse_args()
|
|
|
|
image_file_list = utility.get_image_file_list(args.image_dir)
|
|
|
|
text_detector = TextDetector(args)
|
|
|
|
count = 0
|
|
|
|
total_time = 0
|
|
|
|
for image_file in image_file_list:
|
|
|
|
img = cv2.imread(image_file)
|
|
|
|
if img is None:
|
|
|
|
logger.info("error in loading image:{}".format(image_file))
|
|
|
|
continue
|
|
|
|
dt_boxes, elapse = text_detector(img)
|
|
|
|
if count > 0:
|
|
|
|
total_time += elapse
|
|
|
|
count += 1
|
|
|
|
print("Predict time of %s:" % image_file, elapse)
|
|
|
|
utility.draw_text_det_res(dt_boxes, image_file)
|
|
|
|
print("Avg Time:", total_time / (count - 1))
|