PaddleOCR/ppocr/optimizer.py

156 lines
5.6 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
2020-08-21 16:49:11 +08:00
import math
2020-05-10 16:26:57 +08:00
import paddle.fluid as fluid
2020-07-16 12:40:24 +08:00
from paddle.fluid.regularizer import L2Decay
2020-08-21 16:49:11 +08:00
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
import paddle.fluid.layers.ops as ops
2020-07-16 12:40:24 +08:00
2020-06-12 14:07:58 +08:00
from ppocr.utils.utility import initial_logger
logger = initial_logger()
2020-05-10 16:26:57 +08:00
2020-08-21 16:49:11 +08:00
def cosine_decay_with_warmup(learning_rate,
step_each_epoch,
epochs=500,
warmup_minibatch=1000):
"""Applies cosine decay to the learning rate.
lr = 0.05 * (math.cos(epoch * (math.pi / 120)) + 1)
decrease lr for every mini-batch and start with warmup.
"""
global_step = _decay_step_counter()
lr = fluid.layers.tensor.create_global_var(
shape=[1],
value=0.0,
dtype='float32',
persistable=True,
name="learning_rate")
warmup_minibatch = fluid.layers.fill_constant(
shape=[1],
dtype='float32',
value=float(warmup_minibatch),
force_cpu=True)
with fluid.layers.control_flow.Switch() as switch:
with switch.case(global_step < warmup_minibatch):
decayed_lr = learning_rate * (1.0 * global_step / warmup_minibatch)
fluid.layers.tensor.assign(input=decayed_lr, output=lr)
with switch.default():
decayed_lr = learning_rate * \
(ops.cos((global_step - warmup_minibatch) * (math.pi / (epochs * step_each_epoch))) + 1)/2
fluid.layers.tensor.assign(input=decayed_lr, output=lr)
return lr
2020-05-10 16:26:57 +08:00
def AdamDecay(params, parameter_list=None):
"""
define optimizer function
args:
params(dict): the super parameters
parameter_list (list): list of Variable names to update to minimize loss
return:
"""
base_lr = params['base_lr']
beta1 = params['beta1']
beta2 = params['beta2']
2020-07-16 12:40:24 +08:00
l2_decay = params.get("l2_decay", 0.0)
2020-06-10 15:41:16 +08:00
if 'decay' in params:
2020-08-21 16:49:11 +08:00
supported_decay_mode = [
"cosine_decay", "cosine_decay_warmup", "piecewise_decay"
]
2020-06-10 15:41:16 +08:00
params = params['decay']
decay_mode = params['function']
2020-08-15 17:26:00 +08:00
assert decay_mode in supported_decay_mode, "Supported decay mode is {}, but got {}".format(
supported_decay_mode, decay_mode)
2020-06-10 15:41:16 +08:00
if decay_mode == "cosine_decay":
2020-08-15 17:26:00 +08:00
step_each_epoch = params['step_each_epoch']
total_epoch = params['total_epoch']
2020-06-10 15:41:16 +08:00
base_lr = fluid.layers.cosine_decay(
learning_rate=base_lr,
step_each_epoch=step_each_epoch,
epochs=total_epoch)
2020-08-21 16:49:11 +08:00
elif decay_mode == "cosine_decay_warmup":
step_each_epoch = params['step_each_epoch']
total_epoch = params['total_epoch']
warmup_minibatch = params.get("warmup_minibatch", 1000)
base_lr = cosine_decay_with_warmup(
learning_rate=base_lr,
step_each_epoch=step_each_epoch,
epochs=total_epoch,
warmup_minibatch=warmup_minibatch)
2020-08-15 17:26:00 +08:00
elif decay_mode == "piecewise_decay":
boundaries = params["boundaries"]
decay_rate = params["decay_rate"]
values = [
base_lr * decay_rate**idx
for idx in range(len(boundaries) + 1)
]
base_lr = fluid.layers.piecewise_decay(boundaries, values)
2020-05-10 16:26:57 +08:00
optimizer = fluid.optimizer.Adam(
learning_rate=base_lr,
beta1=beta1,
beta2=beta2,
2020-07-16 12:40:24 +08:00
regularization=L2Decay(regularization_coeff=l2_decay),
2020-05-10 16:26:57 +08:00
parameter_list=parameter_list)
return optimizer
2020-08-15 17:26:00 +08:00
def RMSProp(params, parameter_list=None):
"""
define optimizer function
args:
params(dict): the super parameters
parameter_list (list): list of Variable names to update to minimize loss
return:
"""
base_lr = params.get("base_lr", 0.001)
l2_decay = params.get("l2_decay", 0.00005)
if 'decay' in params:
supported_decay_mode = ["cosine_decay", "piecewise_decay"]
params = params['decay']
decay_mode = params['function']
assert decay_mode in supported_decay_mode, "Supported decay mode is {}, but got {}".format(
supported_decay_mode, decay_mode)
if decay_mode == "cosine_decay":
step_each_epoch = params['step_each_epoch']
total_epoch = params['total_epoch']
base_lr = fluid.layers.cosine_decay(
learning_rate=base_lr,
step_each_epoch=step_each_epoch,
epochs=total_epoch)
elif decay_mode == "piecewise_decay":
boundaries = params["boundaries"]
decay_rate = params["decay_rate"]
values = [
base_lr * decay_rate**idx
for idx in range(len(boundaries) + 1)
]
base_lr = fluid.layers.piecewise_decay(boundaries, values)
optimizer = fluid.optimizer.RMSProp(
learning_rate=base_lr,
regularization=fluid.regularizer.L2Decay(regularization_coeff=l2_decay))
2020-08-21 16:49:11 +08:00
return optimizer