PaddleOCR/ppocr/data/det/make_shrink_map.py

89 lines
3.0 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import cv2
from shapely.geometry import Polygon
import pyclipper
def validate_polygons(polygons, ignore_tags, h, w):
'''
polygons (numpy.array, required): of shape (num_instances, num_points, 2)
'''
if len(polygons) == 0:
return polygons, ignore_tags
assert len(polygons) == len(ignore_tags)
for polygon in polygons:
polygon[:, 0] = np.clip(polygon[:, 0], 0, w - 1)
polygon[:, 1] = np.clip(polygon[:, 1], 0, h - 1)
for i in range(len(polygons)):
area = polygon_area(polygons[i])
if abs(area) < 1:
ignore_tags[i] = True
if area > 0:
polygons[i] = polygons[i][::-1, :]
return polygons, ignore_tags
def polygon_area(polygon):
edge = 0
for i in range(polygon.shape[0]):
next_index = (i + 1) % polygon.shape[0]
edge += (polygon[next_index, 0] - polygon[i, 0]) * (
polygon[next_index, 1] - polygon[i, 1])
return edge / 2.
def MakeShrinkMap(data):
min_text_size = 8
shrink_ratio = 0.4
image = data['image']
text_polys = data['polys']
ignore_tags = data['ignore_tags']
h, w = image.shape[:2]
text_polys, ignore_tags = validate_polygons(text_polys, ignore_tags, h, w)
gt = np.zeros((h, w), dtype=np.float32)
# gt = np.zeros((1, h, w), dtype=np.float32)
mask = np.ones((h, w), dtype=np.float32)
for i in range(len(text_polys)):
polygon = text_polys[i]
height = max(polygon[:, 1]) - min(polygon[:, 1])
width = max(polygon[:, 0]) - min(polygon[:, 0])
# height = min(np.linalg.norm(polygon[0] - polygon[3]),
# np.linalg.norm(polygon[1] - polygon[2]))
# width = min(np.linalg.norm(polygon[0] - polygon[1]),
# np.linalg.norm(polygon[2] - polygon[3]))
if ignore_tags[i] or min(height, width) < min_text_size:
cv2.fillPoly(mask, polygon.astype(np.int32)[np.newaxis, :, :], 0)
ignore_tags[i] = True
else:
polygon_shape = Polygon(polygon)
distance = polygon_shape.area * (
1 - np.power(shrink_ratio, 2)) / polygon_shape.length
subject = [tuple(l) for l in text_polys[i]]
padding = pyclipper.PyclipperOffset()
padding.AddPath(subject, pyclipper.JT_ROUND,
pyclipper.ET_CLOSEDPOLYGON)
shrinked = padding.Execute(-distance)
if shrinked == []:
cv2.fillPoly(mask,
polygon.astype(np.int32)[np.newaxis, :, :], 0)
ignore_tags[i] = True
continue
shrinked = np.array(shrinked[0]).reshape(-1, 2)
cv2.fillPoly(gt, [shrinked.astype(np.int32)], 1)
# cv2.fillPoly(gt[0], [shrinked.astype(np.int32)], 1)
data['shrink_map'] = gt
data['shrink_mask'] = mask
return data