59 lines
2.1 KiB
Markdown
59 lines
2.1 KiB
Markdown
|
|
|||
|
# 介绍
|
|||
|
|
|||
|
test.sh和params.txt文件配合使用,完成OCR轻量检测和识别模型从训练到预测的流程测试。
|
|||
|
|
|||
|
# 安装依赖
|
|||
|
- 安装PaddlePaddle >= 2.0
|
|||
|
- 安装PaddleOCR依赖
|
|||
|
```
|
|||
|
pip3 install -r ../requirements.txt
|
|||
|
```
|
|||
|
- 安装autolog
|
|||
|
```
|
|||
|
git clone https://github.com/LDOUBLEV/AutoLog
|
|||
|
cd AutoLog
|
|||
|
pip3 install -r requirements.txt
|
|||
|
python3 setup.py bdist_wheel
|
|||
|
pip3 install ./dist/auto_log-1.0.0-py3-none-any.whl
|
|||
|
cd ../
|
|||
|
```
|
|||
|
|
|||
|
# 目录介绍
|
|||
|
|
|||
|
```bash
|
|||
|
tests/
|
|||
|
├── ocr_det_params.txt # 测试OCR检测模型的参数配置文件
|
|||
|
├── ocr_rec_params.txt # 测试OCR识别模型的参数配置文件
|
|||
|
└── prepare.sh # 完成test.sh运行所需要的数据和模型下载
|
|||
|
└── test.sh # 根据
|
|||
|
```
|
|||
|
|
|||
|
# 使用方法
|
|||
|
test.sh包含四种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是:
|
|||
|
- 模式1 lite_train_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度;
|
|||
|
```
|
|||
|
bash test/prepare.sh ./tests/ocr_det_params.txt 'lite_train_infer'
|
|||
|
bash tests/test.sh ./tests/ocr_det_params.txt 'lite_train_infer'
|
|||
|
```
|
|||
|
- 模式2 whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理;
|
|||
|
```
|
|||
|
bash tests/prepare.sh ./tests/ocr_det_params.txt 'whole_infer'
|
|||
|
bash tests/test.sh ./tests/ocr_det_params.txt 'whole_infer'
|
|||
|
```
|
|||
|
|
|||
|
- 模式3 infer 不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度;
|
|||
|
```
|
|||
|
bash tests/prepare.sh ./tests/ocr_det_params.txt 'infer'
|
|||
|
用法1:
|
|||
|
bash tests/test.sh ./tests/ocr_det_params.txt 'infer'
|
|||
|
用法2: 指定GPU卡预测,第三个传入参数为GPU卡号
|
|||
|
bash tests/test.sh ./tests/ocr_det_params.txt 'infer' '1'
|
|||
|
```
|
|||
|
|
|||
|
模式4: whole_train_infer , CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度
|
|||
|
```
|
|||
|
bash tests/prepare.sh ./tests/ocr_det_params.txt 'whole_train_infer'
|
|||
|
bash tests/test.sh ./tests/ocr_det_params.txt 'whole_train_infer'
|
|||
|
```
|