2021-04-09 23:24:54 +08:00
# Multi-language model
**Recent Update**
2021-04-12 15:10:47 +08:00
- 2021.4.9 supports the detection and recognition of 80 languages
- 2021.4.9 supports **lightweight high-precision** English model detection and recognition
PaddleOCR aims to create a rich, leading, and practical OCR tool library, which not only provides
Chinese and English models in general scenarios, but also provides models specifically trained
in English scenarios. And multilingual models covering [80 languages ](#language_abbreviations ).
Among them, the English model supports the detection and recognition of uppercase and lowercase
letters and common punctuation, and the recognition of space characters is optimized:
< div align = "center" >
2021-04-27 10:23:23 +08:00
< img src = "../imgs_results/multi_lang/img_12.jpg" width = "900" height = "300" >
2021-04-12 15:10:47 +08:00
< / div >
The multilingual models cover Latin, Arabic, Traditional Chinese, Korean, Japanese, etc.:
< div align = "center" >
< img src = "../imgs_results/multi_lang/japan_2.jpg" width = "600" height = "300" >
< img src = "../imgs_results/multi_lang/french_0.jpg" width = "300" height = "300" >
2021-04-27 10:23:23 +08:00
< img src = "../imgs_results/multi_lang/korean_0.jpg" width = "500" height = "300" >
< img src = "../imgs_results/multi_lang/arabic_0.jpg" width = "300" height = "300" >
2021-04-12 15:10:47 +08:00
< / div >
This document will briefly introduce how to use the multilingual model.
- [1 Installation ](#Install )
- [1.1 paddle installation ](#paddleinstallation )
- [1.2 paddleocr package installation ](#paddleocr_package_install )
- [2 Quick Use ](#Quick_Use )
- [2.1 Command line operation ](#Command_line_operation )
- [2.2 python script running ](#python_Script_running )
- [3 Custom Training ](#Custom_Training )
2021-04-27 10:23:23 +08:00
- [4 Inference and Deployment ](#inference )
2021-04-12 15:10:47 +08:00
- [4 Supported languages and abbreviations ](#language_abbreviations )
2021-04-09 23:24:54 +08:00
< a name = "Install" > < / a >
## 1 Installation
< a name = "paddle_install" > < / a >
### 1.1 paddle installation
```
# cpu
pip install paddlepaddle
# gpu
2021-04-27 10:23:23 +08:00
pip install paddlepaddle-gpu
2021-04-09 23:24:54 +08:00
```
< a name = "paddleocr_package_install" > < / a >
### 1.2 paddleocr package installation
pip install
```
2021-04-13 17:54:10 +08:00
pip install "paddleocr>=2.0.6" # 2.0.6 version is recommended
2021-04-09 23:24:54 +08:00
```
Build and install locally
```
python3 setup.py bdist_wheel
pip3 install dist/paddleocr-x.x.x-py3-none-any.whl # x.x.x is the version number of paddleocr
```
< a name = "Quick_use" > < / a >
## 2 Quick use
< a name = "Command_line_operation" > < / a >
### 2.1 Command line operation
View help information
```
paddleocr -h
```
* Whole image prediction (detection + recognition)
2021-04-09 23:32:50 +08:00
Paddleocr currently supports 80 languages, which can be switched by modifying the --lang parameter.
The specific supported [language] (#language_abbreviations) can be viewed in the table.
2021-04-09 23:24:54 +08:00
``` bash
2021-05-08 11:38:36 +08:00
paddleocr --image_dir doc/imgs_en/254.jpg --lang=en
2021-04-09 23:24:54 +08:00
```
2021-05-08 11:38:36 +08:00
< div align = "center" >
< img src = "../imgs_en/254.jpg" width = "300" height = "600" >
< img src = "../imgs_results/multi_lang/img_02.jpg" width = "600" height = "600" >
< / div >
2021-04-09 23:24:54 +08:00
The result is a list, each item contains a text box, text and recognition confidence
```text
2021-05-08 11:38:36 +08:00
[('PHO CAPITAL', 0.95723116), [[66.0, 50.0], [327.0, 44.0], [327.0, 76.0], [67.0, 82.0]]]
[('107 State Street', 0.96311164), [[72.0, 90.0], [451.0, 84.0], [452.0, 116.0], [73.0, 121.0]]]
[('Montpelier Vermont', 0.97389287), [[69.0, 132.0], [501.0, 126.0], [501.0, 158.0], [70.0, 164.0]]]
[('8022256183', 0.99810505), [[71.0, 175.0], [363.0, 170.0], [364.0, 202.0], [72.0, 207.0]]]
[('REG 07-24-201706:59 PM', 0.93537045), [[73.0, 299.0], [653.0, 281.0], [654.0, 318.0], [74.0, 336.0]]]
[('045555', 0.99346405), [[509.0, 331.0], [651.0, 325.0], [652.0, 356.0], [511.0, 362.0]]]
[('CT1', 0.9988654), [[535.0, 367.0], [654.0, 367.0], [654.0, 406.0], [535.0, 406.0]]]
2021-04-09 23:24:54 +08:00
......
```
2021-04-09 23:32:50 +08:00
* Recognition
2021-04-09 23:24:54 +08:00
```bash
2021-05-08 11:38:36 +08:00
paddleocr --image_dir doc/imgs_words_en/word_308.png --det false --lang=en
2021-04-09 23:24:54 +08:00
```
2021-05-08 11:38:36 +08:00
![](https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/release/2.1/doc/imgs_words_en/word_308.png)
2021-04-09 23:24:54 +08:00
The result is a tuple, which returns the recognition result and recognition confidence
```text
2021-05-08 11:38:36 +08:00
(0.99879867, 'LITTLE')
2021-04-09 23:24:54 +08:00
```
2021-04-09 23:32:50 +08:00
* Detection
2021-04-09 23:24:54 +08:00
```
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --rec false
```
The result is a list, each item contains only text boxes
```
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]]
[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]]
[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]]
......
```
< a name = "python_script_running" > < / a >
### 2.2 python script running
ppocr also supports running in python scripts for easy embedding in your own code:
* Whole image prediction (detection + recognition)
```
from paddleocr import PaddleOCR, draw_ocr
# Also switch the language by modifying the lang parameter
ocr = PaddleOCR(lang="korean") # The model file will be downloaded automatically when executed for the first time
img_path ='doc/imgs/korean_1.jpg'
result = ocr.ocr(img_path)
2021-04-27 10:23:23 +08:00
# Recognition and detection can be performed separately through parameter control
# result = ocr.ocr(img_path, det=False) Only perform recognition
# result = ocr.ocr(img_path, rec=False) Only perform detection
2021-04-09 23:24:54 +08:00
# Print detection frame and recognition result
for line in result:
print(line)
# Visualization
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
2021-04-14 15:38:27 +08:00
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/fonts/korean.ttf')
2021-04-09 23:24:54 +08:00
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
Visualization of results:
2021-04-12 15:10:47 +08:00
![](https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/release/2.1/doc/imgs_results/korean.jpg)
2021-04-09 23:24:54 +08:00
ppocr also supports direction classification. For more usage methods, please refer to: [whl package instructions ](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.0/doc/doc_ch/whl.md ).
< a name = "Custom_training" > < / a >
## 3 Custom training
ppocr supports using your own data for custom training or finetune, where the recognition model can refer to [French configuration file ](../../configs/rec/multi_language/rec_french_lite_train.yml )
Modify the training data path, dictionary and other parameters.
2021-04-09 23:34:02 +08:00
For specific data preparation and training process, please refer to: [Text Detection ](../doc_en/detection_en.md ), [Text Recognition ](../doc_en/recognition_en.md ), more functions such as predictive deployment,
For functions such as data annotation, you can read the complete [Document Tutorial ](../../README.md ).
2021-04-09 23:24:54 +08:00
2021-04-27 10:23:23 +08:00
< a name = "inference" > < / a >
## 4 Inference and Deployment
In addition to installing the whl package for quick forecasting,
ppocr also provides a variety of forecasting deployment methods.
If necessary, you can read related documents:
- [Python Inference ](./inference_en.md )
- [C++ Inference ](../../deploy/cpp_infer/readme_en.md )
- [Serving ](../../deploy/hubserving/readme_en.md )
- [Mobile ](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/lite/readme_en.md )
- [Benchmark ](./benchmark_en.md )
< a name = "language_abbreviations" > < / a >
## 5 Support languages and abbreviations
| Language | Abbreviation | | Language | Abbreviation |
| --- | --- | --- | --- | --- |
|chinese and english|ch| |Arabic|ar|
|english|en| |Hindi|hi|
|french|fr| |Uyghur|ug|
|german|german| |Persian|fa|
|japan|japan| |Urdu|ur|
|korean|korean| | Serbian(latin) |rs_latin|
|chinese traditional |ch_tra| |Occitan |oc|
| Italian |it| |Marathi|mr|
|Spanish |es| |Nepali|ne|
| Portuguese|pt| |Serbian(cyrillic)|rs_cyrillic|
|Russia|ru||Bulgarian |bg|
|Ukranian|uk| |Estonian |et|
|Belarusian|be| |Irish |ga|
|Telugu |te| |Croatian |hr|
|Saudi Arabia|sa| |Hungarian |hu|
|Tamil |ta| |Indonesian|id|
|Afrikaans |af| |Icelandic|is|
|Azerbaijani |az||Kurdish|ku|
|Bosnian|bs| |Lithuanian |lt|
|Czech|cs| |Latvian |lv|
|Welsh |cy| |Maori|mi|
|Danish|da| |Malay|ms|
|Maltese |mt| |Adyghe |ady|
|Dutch |nl| |Kabardian |kbd|
|Norwegian |no| |Avar |ava|
|Polish |pl| |Dargwa |dar|
|Romanian |ro| |Ingush |inh|
|Slovak |sk| |Lak |lbe|
|Slovenian |sl| |Lezghian |lez|
|Albanian |sq| |Tabassaran |tab|
|Swedish |sv| |Bihari |bh|
|Swahili |sw| |Maithili |mai|
|Tagalog |tl| |Angika |ang|
|Turkish |tr| |Bhojpuri |bho|
|Uzbek |uz| |Magahi |mah|
|Vietnamese |vi| |Nagpur |sck|
|Mongolian |mn| |Newari |new|
|Abaza |abq| |Goan Konkani|gom|