2020-12-01 17:46:50 +08:00
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
sys . path . insert ( 0 , " . " )
2021-04-24 14:30:49 +08:00
import copy
2020-12-01 17:46:50 +08:00
from paddlehub . common . logger import logger
from paddlehub . module . module import moduleinfo , runnable , serving
import cv2
import paddlehub as hub
from tools . infer . utility import base64_to_cv2
from tools . infer . predict_cls import TextClassifier
2021-04-24 14:30:49 +08:00
from tools . infer . utility import parse_args
2021-04-26 12:56:14 +08:00
from deploy . hubserving . ocr_cls . params import read_params
2020-12-01 17:46:50 +08:00
@moduleinfo (
name = " ocr_cls " ,
version = " 1.0.0 " ,
summary = " ocr recognition service " ,
author = " paddle-dev " ,
author_email = " paddle-dev@baidu.com " ,
type = " cv/text_recognition " )
class OCRCls ( hub . Module ) :
def _initialize ( self , use_gpu = False , enable_mkldnn = False ) :
"""
initialize with the necessary elements
"""
2021-04-24 14:30:49 +08:00
cfg = self . merge_configs ( )
2020-12-01 17:46:50 +08:00
cfg . use_gpu = use_gpu
if use_gpu :
try :
_places = os . environ [ " CUDA_VISIBLE_DEVICES " ]
int ( _places [ 0 ] )
print ( " use gpu: " , use_gpu )
print ( " CUDA_VISIBLE_DEVICES: " , _places )
cfg . gpu_mem = 8000
except :
raise RuntimeError (
" Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id. "
)
cfg . ir_optim = True
cfg . enable_mkldnn = enable_mkldnn
self . text_classifier = TextClassifier ( cfg )
2021-04-24 14:30:49 +08:00
def merge_configs ( self , ) :
# deafult cfg
backup_argv = copy . deepcopy ( sys . argv )
sys . argv = sys . argv [ : 1 ]
cfg = parse_args ( )
update_cfg_map = vars ( read_params ( ) )
for key in update_cfg_map :
cfg . __setattr__ ( key , update_cfg_map [ key ] )
sys . argv = copy . deepcopy ( backup_argv )
return cfg
2020-12-01 17:46:50 +08:00
def read_images ( self , paths = [ ] ) :
images = [ ]
for img_path in paths :
assert os . path . isfile (
img_path ) , " The {} isn ' t a valid file. " . format ( img_path )
img = cv2 . imread ( img_path )
if img is None :
logger . info ( " error in loading image: {} " . format ( img_path ) )
continue
images . append ( img )
return images
def predict ( self , images = [ ] , paths = [ ] ) :
"""
Get the text angle in the predicted images .
Args :
images ( list ( numpy . ndarray ) ) : images data , shape of each is [ H , W , C ] . If images not paths
paths ( list [ str ] ) : The paths of images . If paths not images
Returns :
res ( list ) : The result of text detection box and save path of images .
"""
if images != [ ] and isinstance ( images , list ) and paths == [ ] :
predicted_data = images
elif images == [ ] and isinstance ( paths , list ) and paths != [ ] :
predicted_data = self . read_images ( paths )
else :
raise TypeError ( " The input data is inconsistent with expectations. " )
assert predicted_data != [ ] , " There is not any image to be predicted. Please check the input data. "
img_list = [ ]
for img in predicted_data :
if img is None :
continue
img_list . append ( img )
rec_res_final = [ ]
try :
img_list , cls_res , predict_time = self . text_classifier ( img_list )
for dno in range ( len ( cls_res ) ) :
angle , score = cls_res [ dno ]
rec_res_final . append ( {
' angle ' : angle ,
' confidence ' : float ( score ) ,
} )
except Exception as e :
print ( e )
return [ [ ] ]
return [ rec_res_final ]
@serving
def serving_method ( self , images , * * kwargs ) :
"""
Run as a service .
"""
images_decode = [ base64_to_cv2 ( image ) for image in images ]
results = self . predict ( images_decode , * * kwargs )
return results
if __name__ == ' __main__ ' :
ocr = OCRCls ( )
image_path = [
' ./doc/imgs_words/ch/word_1.jpg ' ,
' ./doc/imgs_words/ch/word_2.jpg ' ,
' ./doc/imgs_words/ch/word_3.jpg ' ,
]
res = ocr . predict ( paths = image_path )
print ( res )