77 lines
2.6 KiB
Python
77 lines
2.6 KiB
Python
|
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
#you may not use this file except in compliance with the License.
|
||
|
#You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
#Unless required by applicable law or agreed to in writing, software
|
||
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
#See the License for the specific language governing permissions and
|
||
|
#limitations under the License.
|
||
|
|
||
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
|
||
|
from .rec_ctc_loss import CTCLoss
|
||
|
from .basic_loss import DMLLoss
|
||
|
|
||
|
|
||
|
class DistillationDMLLoss(DMLLoss):
|
||
|
"""
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
model_name_list1=[],
|
||
|
model_name_list2=[],
|
||
|
key=None,
|
||
|
name="loss_dml"):
|
||
|
super().__init__(name=name)
|
||
|
if not isinstance(model_name_list1, (list, )):
|
||
|
model_name_list1 = [model_name_list1]
|
||
|
if not isinstance(model_name_list2, (list, )):
|
||
|
model_name_list2 = [model_name_list2]
|
||
|
|
||
|
assert len(model_name_list1) == len(model_name_list2)
|
||
|
self.model_name_list1 = model_name_list1
|
||
|
self.model_name_list2 = model_name_list2
|
||
|
self.key = key
|
||
|
|
||
|
def forward(self, predicts, batch):
|
||
|
loss_dict = dict()
|
||
|
for idx in range(len(self.model_name_list1)):
|
||
|
out1 = predicts[self.model_name_list1[idx]]
|
||
|
out2 = predicts[self.model_name_list2[idx]]
|
||
|
if self.key is not None:
|
||
|
out1 = out1[self.key]
|
||
|
out2 = out2[self.key]
|
||
|
loss = super().forward(out1, out2)
|
||
|
if isinstance(loss, dict):
|
||
|
assert len(loss) == 1
|
||
|
loss = list(loss.values())[0]
|
||
|
loss_dict["{}_{}".format(self.name, idx)] = loss
|
||
|
return loss_dict
|
||
|
|
||
|
|
||
|
class DistillationCTCLoss(CTCLoss):
|
||
|
def __init__(self, model_name_list=[], key=None, name="loss_ctc"):
|
||
|
super().__init__()
|
||
|
self.model_name_list = model_name_list
|
||
|
self.key = key
|
||
|
self.name = name
|
||
|
|
||
|
def forward(self, predicts, batch):
|
||
|
loss_dict = dict()
|
||
|
for model_name in self.model_name_list:
|
||
|
out = predicts[model_name]
|
||
|
if self.key is not None:
|
||
|
out = out[self.key]
|
||
|
loss = super().forward(out, batch)
|
||
|
if isinstance(loss, dict):
|
||
|
assert len(loss) == 1
|
||
|
loss = list(loss.values())[0]
|
||
|
loss_dict["{}_{}".format(self.name, model_name)] = loss
|
||
|
return loss_dict
|