29 lines
1.0 KiB
Python
29 lines
1.0 KiB
Python
|
from paddle import nn
|
||
|
|
||
|
class MTB(nn.Layer):
|
||
|
def __init__(self, cnn_num, in_channels):
|
||
|
super(MTB, self).__init__()
|
||
|
self.block = nn.Sequential()
|
||
|
self.out_channels = in_channels
|
||
|
self.cnn_num = cnn_num
|
||
|
if self.cnn_num == 2:
|
||
|
for i in range(self.cnn_num):
|
||
|
self.block.add_sublayer('conv_{}'.format(i), nn.Conv2D(
|
||
|
in_channels = in_channels if i == 0 else 32*(2**(i-1)),
|
||
|
out_channels = 32*(2**i),
|
||
|
kernel_size = 3,
|
||
|
stride = 2,
|
||
|
padding=1))
|
||
|
self.block.add_sublayer('relu_{}'.format(i), nn.ReLU())
|
||
|
self.block.add_sublayer('bn_{}'.format(i), nn.BatchNorm2D(32*(2**i)))
|
||
|
|
||
|
def forward(self, images):
|
||
|
|
||
|
x = self.block(images)
|
||
|
if self.cnn_num == 2:
|
||
|
# (b, w, h, c)
|
||
|
x = x.transpose([0, 3, 2, 1])
|
||
|
x_shape = x.shape
|
||
|
x = x.reshape([x_shape[0], x_shape[1], x_shape[2] * x_shape[3]])
|
||
|
return x
|