308 lines
10 KiB
Python
308 lines
10 KiB
Python
|
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
#you may not use this file except in compliance with the License.
|
||
|
#You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
#Unless required by applicable law or agreed to in writing, software
|
||
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
#See the License for the specific language governing permissions and
|
||
|
#limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
from paddle import nn, ParamAttr
|
||
|
from paddle.nn import functional as F
|
||
|
import paddle.fluid as fluid
|
||
|
import paddle
|
||
|
import numpy as np
|
||
|
|
||
|
__all__ = ["ResNetFPN"]
|
||
|
|
||
|
|
||
|
class ResNetFPN(nn.Layer):
|
||
|
def __init__(self, in_channels=1, layers=50, **kwargs):
|
||
|
super(ResNetFPN, self).__init__()
|
||
|
supported_layers = {
|
||
|
18: {
|
||
|
'depth': [2, 2, 2, 2],
|
||
|
'block_class': BasicBlock
|
||
|
},
|
||
|
34: {
|
||
|
'depth': [3, 4, 6, 3],
|
||
|
'block_class': BasicBlock
|
||
|
},
|
||
|
50: {
|
||
|
'depth': [3, 4, 6, 3],
|
||
|
'block_class': BottleneckBlock
|
||
|
},
|
||
|
101: {
|
||
|
'depth': [3, 4, 23, 3],
|
||
|
'block_class': BottleneckBlock
|
||
|
},
|
||
|
152: {
|
||
|
'depth': [3, 8, 36, 3],
|
||
|
'block_class': BottleneckBlock
|
||
|
}
|
||
|
}
|
||
|
stride_list = [(2, 2), (2, 2), (1, 1), (1, 1)]
|
||
|
num_filters = [64, 128, 256, 512]
|
||
|
self.depth = supported_layers[layers]['depth']
|
||
|
self.F = []
|
||
|
self.conv = ConvBNLayer(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=64,
|
||
|
kernel_size=7,
|
||
|
stride=2,
|
||
|
act="relu",
|
||
|
name="conv1")
|
||
|
self.block_list = []
|
||
|
in_ch = 64
|
||
|
if layers >= 50:
|
||
|
for block in range(len(self.depth)):
|
||
|
for i in range(self.depth[block]):
|
||
|
if layers in [101, 152] and block == 2:
|
||
|
if i == 0:
|
||
|
conv_name = "res" + str(block + 2) + "a"
|
||
|
else:
|
||
|
conv_name = "res" + str(block + 2) + "b" + str(i)
|
||
|
else:
|
||
|
conv_name = "res" + str(block + 2) + chr(97 + i)
|
||
|
block_list = self.add_sublayer(
|
||
|
"bottleneckBlock_{}_{}".format(block, i),
|
||
|
BottleneckBlock(
|
||
|
in_channels=in_ch,
|
||
|
out_channels=num_filters[block],
|
||
|
stride=stride_list[block] if i == 0 else 1,
|
||
|
name=conv_name))
|
||
|
in_ch = num_filters[block] * 4
|
||
|
self.block_list.append(block_list)
|
||
|
self.F.append(block_list)
|
||
|
else:
|
||
|
for block in range(len(self.depth)):
|
||
|
for i in range(self.depth[block]):
|
||
|
conv_name = "res" + str(block + 2) + chr(97 + i)
|
||
|
if i == 0 and block != 0:
|
||
|
stride = (2, 1)
|
||
|
else:
|
||
|
stride = (1, 1)
|
||
|
basic_block = self.add_sublayer(
|
||
|
conv_name,
|
||
|
BasicBlock(
|
||
|
in_channels=in_ch,
|
||
|
out_channels=num_filters[block],
|
||
|
stride=stride_list[block] if i == 0 else 1,
|
||
|
is_first=block == i == 0,
|
||
|
name=conv_name))
|
||
|
in_ch = basic_block.out_channels
|
||
|
self.block_list.append(basic_block)
|
||
|
out_ch_list = [in_ch // 4, in_ch // 2, in_ch]
|
||
|
self.base_block = []
|
||
|
self.conv_trans = []
|
||
|
self.bn_block = []
|
||
|
for i in [-2, -3]:
|
||
|
in_channels = out_ch_list[i + 1] + out_ch_list[i]
|
||
|
|
||
|
self.base_block.append(
|
||
|
self.add_sublayer(
|
||
|
"F_{}_base_block_0".format(i),
|
||
|
nn.Conv2D(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=out_ch_list[i],
|
||
|
kernel_size=1,
|
||
|
weight_attr=ParamAttr(trainable=True),
|
||
|
bias_attr=ParamAttr(trainable=True))))
|
||
|
self.base_block.append(
|
||
|
self.add_sublayer(
|
||
|
"F_{}_base_block_1".format(i),
|
||
|
nn.Conv2D(
|
||
|
in_channels=out_ch_list[i],
|
||
|
out_channels=out_ch_list[i],
|
||
|
kernel_size=3,
|
||
|
padding=1,
|
||
|
weight_attr=ParamAttr(trainable=True),
|
||
|
bias_attr=ParamAttr(trainable=True))))
|
||
|
self.base_block.append(
|
||
|
self.add_sublayer(
|
||
|
"F_{}_base_block_2".format(i),
|
||
|
nn.BatchNorm(
|
||
|
num_channels=out_ch_list[i],
|
||
|
act="relu",
|
||
|
param_attr=ParamAttr(trainable=True),
|
||
|
bias_attr=ParamAttr(trainable=True))))
|
||
|
self.base_block.append(
|
||
|
self.add_sublayer(
|
||
|
"F_{}_base_block_3".format(i),
|
||
|
nn.Conv2D(
|
||
|
in_channels=out_ch_list[i],
|
||
|
out_channels=512,
|
||
|
kernel_size=1,
|
||
|
bias_attr=ParamAttr(trainable=True),
|
||
|
weight_attr=ParamAttr(trainable=True))))
|
||
|
self.out_channels = 512
|
||
|
|
||
|
def __call__(self, x):
|
||
|
x = self.conv(x)
|
||
|
fpn_list = []
|
||
|
F = []
|
||
|
for i in range(len(self.depth)):
|
||
|
fpn_list.append(np.sum(self.depth[:i + 1]))
|
||
|
|
||
|
for i, block in enumerate(self.block_list):
|
||
|
x = block(x)
|
||
|
for number in fpn_list:
|
||
|
if i + 1 == number:
|
||
|
F.append(x)
|
||
|
base = F[-1]
|
||
|
|
||
|
j = 0
|
||
|
for i, block in enumerate(self.base_block):
|
||
|
if i % 3 == 0 and i < 6:
|
||
|
j = j + 1
|
||
|
b, c, w, h = F[-j - 1].shape
|
||
|
if [w, h] == list(base.shape[2:]):
|
||
|
base = base
|
||
|
else:
|
||
|
base = self.conv_trans[j - 1](base)
|
||
|
base = self.bn_block[j - 1](base)
|
||
|
base = paddle.concat([base, F[-j - 1]], axis=1)
|
||
|
base = block(base)
|
||
|
return base
|
||
|
|
||
|
|
||
|
class ConvBNLayer(nn.Layer):
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
stride=1,
|
||
|
groups=1,
|
||
|
act=None,
|
||
|
name=None):
|
||
|
super(ConvBNLayer, self).__init__()
|
||
|
self.conv = nn.Conv2D(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=out_channels,
|
||
|
kernel_size=2 if stride == (1, 1) else kernel_size,
|
||
|
dilation=2 if stride == (1, 1) else 1,
|
||
|
stride=stride,
|
||
|
padding=(kernel_size - 1) // 2,
|
||
|
groups=groups,
|
||
|
weight_attr=ParamAttr(name=name + '.conv2d.output.1.w_0'),
|
||
|
bias_attr=False, )
|
||
|
|
||
|
if name == "conv1":
|
||
|
bn_name = "bn_" + name
|
||
|
else:
|
||
|
bn_name = "bn" + name[3:]
|
||
|
self.bn = nn.BatchNorm(
|
||
|
num_channels=out_channels,
|
||
|
act=act,
|
||
|
param_attr=ParamAttr(name=name + '.output.1.w_0'),
|
||
|
bias_attr=ParamAttr(name=name + '.output.1.b_0'),
|
||
|
moving_mean_name=bn_name + "_mean",
|
||
|
moving_variance_name=bn_name + "_variance")
|
||
|
|
||
|
def __call__(self, x):
|
||
|
x = self.conv(x)
|
||
|
x = self.bn(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class ShortCut(nn.Layer):
|
||
|
def __init__(self, in_channels, out_channels, stride, name, is_first=False):
|
||
|
super(ShortCut, self).__init__()
|
||
|
self.use_conv = True
|
||
|
|
||
|
if in_channels != out_channels or stride != 1 or is_first == True:
|
||
|
if stride == (1, 1):
|
||
|
self.conv = ConvBNLayer(
|
||
|
in_channels, out_channels, 1, 1, name=name)
|
||
|
else: # stride==(2,2)
|
||
|
self.conv = ConvBNLayer(
|
||
|
in_channels, out_channels, 1, stride, name=name)
|
||
|
else:
|
||
|
self.use_conv = False
|
||
|
|
||
|
def forward(self, x):
|
||
|
if self.use_conv:
|
||
|
x = self.conv(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class BottleneckBlock(nn.Layer):
|
||
|
def __init__(self, in_channels, out_channels, stride, name):
|
||
|
super(BottleneckBlock, self).__init__()
|
||
|
self.conv0 = ConvBNLayer(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=out_channels,
|
||
|
kernel_size=1,
|
||
|
act='relu',
|
||
|
name=name + "_branch2a")
|
||
|
self.conv1 = ConvBNLayer(
|
||
|
in_channels=out_channels,
|
||
|
out_channels=out_channels,
|
||
|
kernel_size=3,
|
||
|
stride=stride,
|
||
|
act='relu',
|
||
|
name=name + "_branch2b")
|
||
|
|
||
|
self.conv2 = ConvBNLayer(
|
||
|
in_channels=out_channels,
|
||
|
out_channels=out_channels * 4,
|
||
|
kernel_size=1,
|
||
|
act=None,
|
||
|
name=name + "_branch2c")
|
||
|
|
||
|
self.short = ShortCut(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=out_channels * 4,
|
||
|
stride=stride,
|
||
|
is_first=False,
|
||
|
name=name + "_branch1")
|
||
|
self.out_channels = out_channels * 4
|
||
|
|
||
|
def forward(self, x):
|
||
|
y = self.conv0(x)
|
||
|
y = self.conv1(y)
|
||
|
y = self.conv2(y)
|
||
|
y = y + self.short(x)
|
||
|
y = F.relu(y)
|
||
|
return y
|
||
|
|
||
|
|
||
|
class BasicBlock(nn.Layer):
|
||
|
def __init__(self, in_channels, out_channels, stride, name, is_first):
|
||
|
super(BasicBlock, self).__init__()
|
||
|
self.conv0 = ConvBNLayer(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=out_channels,
|
||
|
kernel_size=3,
|
||
|
act='relu',
|
||
|
stride=stride,
|
||
|
name=name + "_branch2a")
|
||
|
self.conv1 = ConvBNLayer(
|
||
|
in_channels=out_channels,
|
||
|
out_channels=out_channels,
|
||
|
kernel_size=3,
|
||
|
act=None,
|
||
|
name=name + "_branch2b")
|
||
|
self.short = ShortCut(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=out_channels,
|
||
|
stride=stride,
|
||
|
is_first=is_first,
|
||
|
name=name + "_branch1")
|
||
|
self.out_channels = out_channels
|
||
|
|
||
|
def forward(self, x):
|
||
|
y = self.conv0(x)
|
||
|
y = self.conv1(y)
|
||
|
y = y + self.short(x)
|
||
|
return F.relu(y)
|