138 lines
4.7 KiB
Python
138 lines
4.7 KiB
Python
|
# -*- coding:utf-8 -*-
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import argparse
|
||
|
import ast
|
||
|
import copy
|
||
|
import math
|
||
|
import os
|
||
|
import time
|
||
|
|
||
|
from paddle.fluid.core import AnalysisConfig, create_paddle_predictor, PaddleTensor
|
||
|
from paddlehub.common.logger import logger
|
||
|
from paddlehub.module.module import moduleinfo, runnable, serving
|
||
|
from PIL import Image
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
import paddle.fluid as fluid
|
||
|
import paddlehub as hub
|
||
|
|
||
|
from tools.infer.utility import draw_boxes, base64_to_cv2
|
||
|
from tools.infer.predict_det import TextDetector
|
||
|
|
||
|
|
||
|
@moduleinfo(
|
||
|
name="ocr_det",
|
||
|
version="1.0.0",
|
||
|
summary="ocr detection service",
|
||
|
author="paddle-dev",
|
||
|
author_email="paddle-dev@baidu.com",
|
||
|
type="cv/text_recognition")
|
||
|
class OCRDet(hub.Module):
|
||
|
def _initialize(self, use_gpu=False):
|
||
|
"""
|
||
|
initialize with the necessary elements
|
||
|
"""
|
||
|
from ocr_det.params import read_params
|
||
|
cfg = read_params()
|
||
|
|
||
|
cfg.use_gpu = use_gpu
|
||
|
if use_gpu:
|
||
|
try:
|
||
|
_places = os.environ["CUDA_VISIBLE_DEVICES"]
|
||
|
int(_places[0])
|
||
|
print("use gpu: ", use_gpu)
|
||
|
print("CUDA_VISIBLE_DEVICES: ", _places)
|
||
|
cfg.gpu_mem = 8000
|
||
|
except:
|
||
|
raise RuntimeError(
|
||
|
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
|
||
|
)
|
||
|
cfg.ir_optim = True
|
||
|
|
||
|
self.text_detector = TextDetector(cfg)
|
||
|
|
||
|
def read_images(self, paths=[]):
|
||
|
images = []
|
||
|
for img_path in paths:
|
||
|
assert os.path.isfile(
|
||
|
img_path), "The {} isn't a valid file.".format(img_path)
|
||
|
img = cv2.imread(img_path)
|
||
|
if img is None:
|
||
|
logger.info("error in loading image:{}".format(img_path))
|
||
|
continue
|
||
|
images.append(img)
|
||
|
return images
|
||
|
|
||
|
def predict(self,
|
||
|
images=[],
|
||
|
paths=[],
|
||
|
draw_img_save='ocr_det_result',
|
||
|
visualization=False):
|
||
|
"""
|
||
|
Get the text box in the predicted images.
|
||
|
Args:
|
||
|
images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
|
||
|
paths (list[str]): The paths of images. If paths not images
|
||
|
draw_img_save (str): The directory to store output images.
|
||
|
visualization (bool): Whether to save image or not.
|
||
|
Returns:
|
||
|
res (list): The result of text detection box and save path of images.
|
||
|
"""
|
||
|
|
||
|
if images != [] and isinstance(images, list) and paths == []:
|
||
|
predicted_data = images
|
||
|
elif images == [] and isinstance(paths, list) and paths != []:
|
||
|
predicted_data = self.read_images(paths)
|
||
|
else:
|
||
|
raise TypeError("The input data is inconsistent with expectations.")
|
||
|
|
||
|
assert predicted_data != [], "There is not any image to be predicted. Please check the input data."
|
||
|
|
||
|
all_results = []
|
||
|
for img in predicted_data:
|
||
|
result = {'save_path': ''}
|
||
|
if img is None:
|
||
|
logger.info("error in loading image")
|
||
|
result['data'] = []
|
||
|
all_results.append(result)
|
||
|
continue
|
||
|
dt_boxes, elapse = self.text_detector(img)
|
||
|
print("Predict time : ", elapse)
|
||
|
result['data'] = dt_boxes.astype(np.int).tolist()
|
||
|
|
||
|
if visualization:
|
||
|
image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
||
|
draw_img = draw_boxes(image, dt_boxes)
|
||
|
draw_img = np.array(draw_img)
|
||
|
if not os.path.exists(draw_img_save):
|
||
|
os.makedirs(draw_img_save)
|
||
|
saved_name = 'ndarray_{}.jpg'.format(time.time())
|
||
|
save_file_path = os.path.join(draw_img_save, saved_name)
|
||
|
cv2.imwrite(save_file_path, draw_img[:, :, ::-1])
|
||
|
print("The visualized image saved in {}".format(save_file_path))
|
||
|
result['save_path'] = save_file_path
|
||
|
|
||
|
all_results.append(result)
|
||
|
return all_results
|
||
|
|
||
|
@serving
|
||
|
def serving_method(self, images, **kwargs):
|
||
|
"""
|
||
|
Run as a service.
|
||
|
"""
|
||
|
images_decode = [base64_to_cv2(image) for image in images]
|
||
|
results = self.predict(images_decode, **kwargs)
|
||
|
return results
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
ocr = OCRDet()
|
||
|
image_path = [
|
||
|
'./doc/imgs/11.jpg',
|
||
|
'./doc/imgs/12.jpg',
|
||
|
]
|
||
|
res = ocr.predict(paths=image_path, visualization=True)
|
||
|
print(res)
|