PaddleOCR/deploy/hubserving/ocr_rec/module.py

120 lines
3.7 KiB
Python
Raw Normal View History

2020-07-09 20:34:42 +08:00
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import ast
import copy
import math
import os
import time
from paddle.fluid.core import AnalysisConfig, create_paddle_predictor, PaddleTensor
from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, runnable, serving
from PIL import Image
import cv2
import numpy as np
import paddle.fluid as fluid
import paddlehub as hub
from tools.infer.utility import base64_to_cv2
from tools.infer.predict_rec import TextRecognizer
@moduleinfo(
name="ocr_rec",
version="1.0.0",
summary="ocr recognition service",
author="paddle-dev",
author_email="paddle-dev@baidu.com",
type="cv/text_recognition")
class OCRRec(hub.Module):
2020-07-12 16:05:28 +08:00
def _initialize(self, use_gpu=False):
2020-07-09 20:34:42 +08:00
"""
initialize with the necessary elements
"""
2020-07-12 16:05:28 +08:00
from ocr_rec.params import read_params
cfg = read_params()
cfg.use_gpu = use_gpu
2020-07-09 20:34:42 +08:00
if use_gpu:
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
print("use gpu: ", use_gpu)
print("CUDA_VISIBLE_DEVICES: ", _places)
2020-07-12 16:05:28 +08:00
cfg.gpu_mem = 8000
2020-07-09 20:34:42 +08:00
except:
raise RuntimeError(
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
)
2020-07-12 16:05:28 +08:00
cfg.ir_optim = True
2020-07-09 20:34:42 +08:00
2020-07-12 16:05:28 +08:00
self.text_recognizer = TextRecognizer(cfg)
2020-07-09 20:34:42 +08:00
def read_images(self, paths=[]):
images = []
for img_path in paths:
assert os.path.isfile(
img_path), "The {} isn't a valid file.".format(img_path)
img = cv2.imread(img_path)
if img is None:
logger.info("error in loading image:{}".format(img_path))
continue
images.append(img)
return images
2020-07-12 16:05:28 +08:00
def predict(self,
2020-07-09 20:34:42 +08:00
images=[],
paths=[]):
"""
Get the text box in the predicted images.
Args:
images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
paths (list[str]): The paths of images. If paths not images
Returns:
res (list): The result of text detection box and save path of images.
"""
if images != [] and isinstance(images, list) and paths == []:
predicted_data = images
elif images == [] and isinstance(paths, list) and paths != []:
predicted_data = self.read_images(paths)
else:
raise TypeError("The input data is inconsistent with expectations.")
assert predicted_data != [], "There is not any image to be predicted. Please check the input data."
img_list = []
for img in predicted_data:
if img is None:
continue
img_list.append(img)
try:
2020-07-12 16:05:28 +08:00
rec_res, predict_time = self.text_recognizer(img_list)
2020-07-09 20:34:42 +08:00
except Exception as e:
print(e)
return []
return rec_res
@serving
def serving_method(self, images, **kwargs):
"""
Run as a service.
"""
images_decode = [base64_to_cv2(image) for image in images]
2020-07-12 16:05:28 +08:00
results = self.predict(images_decode, **kwargs)
2020-07-09 20:34:42 +08:00
return results
if __name__ == '__main__':
ocr = OCRRec()
image_path = [
'./doc/imgs_words/ch/word_1.jpg',
'./doc/imgs_words/ch/word_2.jpg',
'./doc/imgs_words/ch/word_3.jpg',
]
2020-07-12 16:05:28 +08:00
res = ocr.predict(paths=image_path)
2020-07-09 20:34:42 +08:00
print(res)