PaddleOCR/configs/det/det_mv3_db.yml

133 lines
3.2 KiB
YAML
Raw Normal View History

2020-05-10 16:26:57 +08:00
Global:
use_gpu: true
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 2
2020-10-13 17:13:33 +08:00
save_model_dir: ./output/20201010/
save_epoch_step: 1200
2020-07-07 19:34:10 +08:00
# evaluation is run every 5000 iterations after the 4000th iteration
2020-10-13 17:13:33 +08:00
eval_batch_step: 8
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: False
pretrained_model: /home/zhoujun20/pretrain_models/MobileNetV3_large_x0_5_pretrained
checkpoints: #./output/det_db_0.001_DiceLoss_256_pp_config_2.0b_4gpu/best_accuracy
2020-05-12 21:12:52 +08:00
save_inference_dir:
2020-10-13 17:13:33 +08:00
use_visualdl: True
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_db/predicts_db.txt
2020-05-10 16:26:57 +08:00
2020-10-13 17:13:33 +08:00
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
learning_rate:
# name: Cosine
lr: 0.001
# warmup_epoch: 0
regularizer:
name: 'L2'
factor: 0
2020-05-10 16:26:57 +08:00
2020-10-13 17:13:33 +08:00
Architecture:
type: det
algorithm: DB
Transform:
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
Neck:
name: FPN
out_channels: 256
Head:
name: DBHead
k: 50
2020-05-10 16:26:57 +08:00
Loss:
2020-10-13 17:13:33 +08:00
name: DBLoss
2020-05-10 16:26:57 +08:00
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
PostProcess:
2020-10-13 17:13:33 +08:00
name: DBPostProcess
2020-05-10 16:26:57 +08:00
thresh: 0.3
2020-10-13 17:13:33 +08:00
box_thresh: 0.6
2020-05-10 16:26:57 +08:00
max_candidates: 1000
2020-10-13 17:13:33 +08:00
unclip_ratio: 1.5
Metric:
name: DetMetric
main_indicator: hmean
TRAIN:
dataset:
name: SimpleDataSet
data_dir: /home/zhoujun20/detection/
file_list:
- /home/zhoujun20/detection/train_icdar2015_label.txt # dataset1
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
- { 'type': Affine, 'args': { 'rotate': [ -10,10 ] } }
- { 'type': Resize,'args': { 'size': [ 0.5,3 ] } }
- EastRandomCropData:
size: [ 640,640 ]
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean: [ 0.485, 0.456, 0.406 ]
std: [ 0.229, 0.224, 0.225 ]
order: 'hwc'
- ToCHWImage:
- keepKeys:
keep_keys: ['image','threshold_map','threshold_mask','shrink_map','shrink_mask'] # dataloader将按照此顺序返回list
loader:
shuffle: True
drop_last: False
batch_size: 16
num_workers: 6
EVAL:
dataset:
name: SimpleDataSet
data_dir: /home/zhoujun20/detection/
file_list:
- /home/zhoujun20/detection/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
image_shape: [736,1280]
- NormalizeImage:
scale: 1./255.
mean: [ 0.485, 0.456, 0.406 ]
std: [ 0.229, 0.224, 0.225 ]
order: 'hwc'
- ToCHWImage:
- keepKeys:
keep_keys: ['image','shape','polys','ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size: 1 # must be 1
num_workers: 6