2021-06-21 20:20:25 +08:00
|
|
|
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
2021-06-16 16:47:33 +08:00
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import os
|
|
|
|
import random
|
|
|
|
from paddle.io import Dataset
|
|
|
|
import json
|
|
|
|
|
|
|
|
from .imaug import transform, create_operators
|
|
|
|
|
2021-06-21 20:20:25 +08:00
|
|
|
|
2021-06-16 16:47:33 +08:00
|
|
|
class PubTabDataSet(Dataset):
|
|
|
|
def __init__(self, config, mode, logger, seed=None):
|
|
|
|
super(PubTabDataSet, self).__init__()
|
|
|
|
self.logger = logger
|
|
|
|
|
|
|
|
global_config = config['Global']
|
|
|
|
dataset_config = config[mode]['dataset']
|
|
|
|
loader_config = config[mode]['loader']
|
|
|
|
|
|
|
|
label_file_path = dataset_config.pop('label_file_path')
|
|
|
|
|
|
|
|
self.data_dir = dataset_config['data_dir']
|
|
|
|
self.do_shuffle = loader_config['shuffle']
|
|
|
|
self.do_hard_select = False
|
|
|
|
if 'hard_select' in loader_config:
|
|
|
|
self.do_hard_select = loader_config['hard_select']
|
|
|
|
self.hard_prob = loader_config['hard_prob']
|
|
|
|
if self.do_hard_select:
|
|
|
|
self.img_select_prob = self.load_hard_select_prob()
|
|
|
|
self.table_select_type = None
|
|
|
|
if 'table_select_type' in loader_config:
|
|
|
|
self.table_select_type = loader_config['table_select_type']
|
|
|
|
self.table_select_prob = loader_config['table_select_prob']
|
|
|
|
|
|
|
|
self.seed = seed
|
|
|
|
logger.info("Initialize indexs of datasets:%s" % label_file_path)
|
|
|
|
with open(label_file_path, "rb") as f:
|
|
|
|
self.data_lines = f.readlines()
|
|
|
|
self.data_idx_order_list = list(range(len(self.data_lines)))
|
|
|
|
if mode.lower() == "train":
|
|
|
|
self.shuffle_data_random()
|
|
|
|
self.ops = create_operators(dataset_config['transforms'], global_config)
|
|
|
|
|
|
|
|
def shuffle_data_random(self):
|
|
|
|
if self.do_shuffle:
|
|
|
|
random.seed(self.seed)
|
|
|
|
random.shuffle(self.data_lines)
|
|
|
|
return
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
try:
|
|
|
|
data_line = self.data_lines[idx]
|
|
|
|
data_line = data_line.decode('utf-8').strip("\n")
|
|
|
|
info = json.loads(data_line)
|
|
|
|
file_name = info['filename']
|
|
|
|
select_flag = True
|
|
|
|
if self.do_hard_select:
|
|
|
|
prob = self.img_select_prob[file_name]
|
|
|
|
if prob < random.uniform(0, 1):
|
|
|
|
select_flag = False
|
|
|
|
|
|
|
|
if self.table_select_type:
|
|
|
|
structure = info['html']['structure']['tokens'].copy()
|
|
|
|
structure_str = ''.join(structure)
|
|
|
|
table_type = "simple"
|
|
|
|
if 'colspan' in structure_str or 'rowspan' in structure_str:
|
|
|
|
table_type = "complex"
|
|
|
|
if table_type == "complex":
|
|
|
|
if self.table_select_prob < random.uniform(0, 1):
|
|
|
|
select_flag = False
|
|
|
|
|
|
|
|
if select_flag:
|
|
|
|
cells = info['html']['cells'].copy()
|
|
|
|
structure = info['html']['structure'].copy()
|
|
|
|
img_path = os.path.join(self.data_dir, file_name)
|
|
|
|
data = {'img_path': img_path, 'cells': cells, 'structure':structure}
|
|
|
|
if not os.path.exists(img_path):
|
|
|
|
raise Exception("{} does not exist!".format(img_path))
|
|
|
|
with open(data['img_path'], 'rb') as f:
|
|
|
|
img = f.read()
|
|
|
|
data['image'] = img
|
|
|
|
outs = transform(data, self.ops)
|
|
|
|
else:
|
|
|
|
outs = None
|
|
|
|
except Exception as e:
|
|
|
|
self.logger.error(
|
|
|
|
"When parsing line {}, error happened with msg: {}".format(
|
|
|
|
data_line, e))
|
|
|
|
outs = None
|
|
|
|
if outs is None:
|
|
|
|
return self.__getitem__(np.random.randint(self.__len__()))
|
|
|
|
return outs
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.data_idx_order_list)
|