2020-10-13 17:13:33 +08:00
|
|
|
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
from __future__ import unicode_literals
|
|
|
|
|
2020-11-05 20:49:44 +08:00
|
|
|
from paddle.optimizer import lr
|
2020-12-29 13:49:43 +08:00
|
|
|
from .lr_scheduler import CyclicalCosineDecay
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
|
|
|
|
|
|
class Linear(object):
|
|
|
|
"""
|
|
|
|
Linear learning rate decay
|
|
|
|
Args:
|
|
|
|
lr (float): The initial learning rate. It is a python float number.
|
|
|
|
epochs(int): The decay step size. It determines the decay cycle.
|
|
|
|
end_lr(float, optional): The minimum final learning rate. Default: 0.0001.
|
|
|
|
power(float, optional): Power of polynomial. Default: 1.0.
|
|
|
|
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
2020-11-05 20:49:44 +08:00
|
|
|
learning_rate,
|
2020-10-13 17:13:33 +08:00
|
|
|
epochs,
|
|
|
|
step_each_epoch,
|
|
|
|
end_lr=0.0,
|
|
|
|
power=1.0,
|
|
|
|
warmup_epoch=0,
|
|
|
|
last_epoch=-1,
|
|
|
|
**kwargs):
|
|
|
|
super(Linear, self).__init__()
|
2020-11-05 20:49:44 +08:00
|
|
|
self.learning_rate = learning_rate
|
2020-10-13 17:13:33 +08:00
|
|
|
self.epochs = epochs * step_each_epoch
|
|
|
|
self.end_lr = end_lr
|
|
|
|
self.power = power
|
|
|
|
self.last_epoch = last_epoch
|
2020-12-29 13:49:43 +08:00
|
|
|
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
|
|
def __call__(self):
|
2020-11-05 20:49:44 +08:00
|
|
|
learning_rate = lr.PolynomialDecay(
|
|
|
|
learning_rate=self.learning_rate,
|
2020-10-13 17:13:33 +08:00
|
|
|
decay_steps=self.epochs,
|
|
|
|
end_lr=self.end_lr,
|
|
|
|
power=self.power,
|
|
|
|
last_epoch=self.last_epoch)
|
|
|
|
if self.warmup_epoch > 0:
|
2020-11-05 20:49:44 +08:00
|
|
|
learning_rate = lr.LinearWarmup(
|
2020-10-13 17:13:33 +08:00
|
|
|
learning_rate=learning_rate,
|
|
|
|
warmup_steps=self.warmup_epoch,
|
|
|
|
start_lr=0.0,
|
2020-11-05 20:49:44 +08:00
|
|
|
end_lr=self.learning_rate,
|
2020-10-13 17:13:33 +08:00
|
|
|
last_epoch=self.last_epoch)
|
|
|
|
return learning_rate
|
|
|
|
|
|
|
|
|
|
|
|
class Cosine(object):
|
|
|
|
"""
|
|
|
|
Cosine learning rate decay
|
|
|
|
lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1)
|
|
|
|
Args:
|
|
|
|
lr(float): initial learning rate
|
|
|
|
step_each_epoch(int): steps each epoch
|
|
|
|
epochs(int): total training epochs
|
|
|
|
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
2020-11-05 20:49:44 +08:00
|
|
|
learning_rate,
|
2020-10-13 17:13:33 +08:00
|
|
|
step_each_epoch,
|
|
|
|
epochs,
|
|
|
|
warmup_epoch=0,
|
|
|
|
last_epoch=-1,
|
|
|
|
**kwargs):
|
|
|
|
super(Cosine, self).__init__()
|
2020-11-05 20:49:44 +08:00
|
|
|
self.learning_rate = learning_rate
|
2020-10-13 17:13:33 +08:00
|
|
|
self.T_max = step_each_epoch * epochs
|
|
|
|
self.last_epoch = last_epoch
|
2020-12-29 13:49:43 +08:00
|
|
|
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
|
|
def __call__(self):
|
2020-11-05 20:49:44 +08:00
|
|
|
learning_rate = lr.CosineAnnealingDecay(
|
|
|
|
learning_rate=self.learning_rate,
|
|
|
|
T_max=self.T_max,
|
|
|
|
last_epoch=self.last_epoch)
|
2020-10-13 17:13:33 +08:00
|
|
|
if self.warmup_epoch > 0:
|
2020-11-05 20:49:44 +08:00
|
|
|
learning_rate = lr.LinearWarmup(
|
2020-10-13 17:13:33 +08:00
|
|
|
learning_rate=learning_rate,
|
|
|
|
warmup_steps=self.warmup_epoch,
|
|
|
|
start_lr=0.0,
|
2020-11-05 20:49:44 +08:00
|
|
|
end_lr=self.learning_rate,
|
2020-10-13 17:13:33 +08:00
|
|
|
last_epoch=self.last_epoch)
|
|
|
|
return learning_rate
|
|
|
|
|
|
|
|
|
|
|
|
class Step(object):
|
|
|
|
"""
|
|
|
|
Piecewise learning rate decay
|
|
|
|
Args:
|
|
|
|
step_each_epoch(int): steps each epoch
|
|
|
|
learning_rate (float): The initial learning rate. It is a python float number.
|
|
|
|
step_size (int): the interval to update.
|
|
|
|
gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
|
|
|
|
It should be less than 1.0. Default: 0.1.
|
|
|
|
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
2020-11-05 20:49:44 +08:00
|
|
|
learning_rate,
|
2020-10-13 17:13:33 +08:00
|
|
|
step_size,
|
|
|
|
step_each_epoch,
|
|
|
|
gamma,
|
|
|
|
warmup_epoch=0,
|
|
|
|
last_epoch=-1,
|
|
|
|
**kwargs):
|
|
|
|
super(Step, self).__init__()
|
|
|
|
self.step_size = step_each_epoch * step_size
|
2020-11-05 20:49:44 +08:00
|
|
|
self.learning_rate = learning_rate
|
2020-10-13 17:13:33 +08:00
|
|
|
self.gamma = gamma
|
|
|
|
self.last_epoch = last_epoch
|
2020-12-29 13:49:43 +08:00
|
|
|
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
|
|
def __call__(self):
|
2020-11-05 20:49:44 +08:00
|
|
|
learning_rate = lr.StepDecay(
|
|
|
|
learning_rate=self.learning_rate,
|
2020-10-13 17:13:33 +08:00
|
|
|
step_size=self.step_size,
|
|
|
|
gamma=self.gamma,
|
|
|
|
last_epoch=self.last_epoch)
|
|
|
|
if self.warmup_epoch > 0:
|
2020-11-05 20:49:44 +08:00
|
|
|
learning_rate = lr.LinearWarmup(
|
2020-10-13 17:13:33 +08:00
|
|
|
learning_rate=learning_rate,
|
|
|
|
warmup_steps=self.warmup_epoch,
|
|
|
|
start_lr=0.0,
|
2020-11-05 20:49:44 +08:00
|
|
|
end_lr=self.learning_rate,
|
2020-10-13 17:13:33 +08:00
|
|
|
last_epoch=self.last_epoch)
|
|
|
|
return learning_rate
|
|
|
|
|
|
|
|
|
|
|
|
class Piecewise(object):
|
|
|
|
"""
|
|
|
|
Piecewise learning rate decay
|
|
|
|
Args:
|
|
|
|
boundaries(list): A list of steps numbers. The type of element in the list is python int.
|
|
|
|
values(list): A list of learning rate values that will be picked during different epoch boundaries.
|
|
|
|
The type of element in the list is python float.
|
|
|
|
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
step_each_epoch,
|
|
|
|
decay_epochs,
|
|
|
|
values,
|
|
|
|
warmup_epoch=0,
|
|
|
|
last_epoch=-1,
|
|
|
|
**kwargs):
|
|
|
|
super(Piecewise, self).__init__()
|
|
|
|
self.boundaries = [step_each_epoch * e for e in decay_epochs]
|
|
|
|
self.values = values
|
|
|
|
self.last_epoch = last_epoch
|
2020-12-29 13:49:43 +08:00
|
|
|
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
|
|
def __call__(self):
|
2020-11-05 20:49:44 +08:00
|
|
|
learning_rate = lr.PiecewiseDecay(
|
2020-10-13 17:13:33 +08:00
|
|
|
boundaries=self.boundaries,
|
|
|
|
values=self.values,
|
|
|
|
last_epoch=self.last_epoch)
|
|
|
|
if self.warmup_epoch > 0:
|
2020-11-05 20:49:44 +08:00
|
|
|
learning_rate = lr.LinearWarmup(
|
2020-10-13 17:13:33 +08:00
|
|
|
learning_rate=learning_rate,
|
|
|
|
warmup_steps=self.warmup_epoch,
|
|
|
|
start_lr=0.0,
|
|
|
|
end_lr=self.values[0],
|
|
|
|
last_epoch=self.last_epoch)
|
|
|
|
return learning_rate
|
2020-12-29 13:49:43 +08:00
|
|
|
|
|
|
|
|
|
|
|
class CyclicalCosine(object):
|
|
|
|
"""
|
|
|
|
Cyclical cosine learning rate decay
|
|
|
|
Args:
|
|
|
|
learning_rate(float): initial learning rate
|
|
|
|
step_each_epoch(int): steps each epoch
|
|
|
|
epochs(int): total training epochs
|
|
|
|
cycle(int): period of the cosine learning rate
|
|
|
|
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
learning_rate,
|
|
|
|
step_each_epoch,
|
|
|
|
epochs,
|
|
|
|
cycle,
|
|
|
|
warmup_epoch=0,
|
|
|
|
last_epoch=-1,
|
|
|
|
**kwargs):
|
|
|
|
super(CyclicalCosine, self).__init__()
|
|
|
|
self.learning_rate = learning_rate
|
|
|
|
self.T_max = step_each_epoch * epochs
|
|
|
|
self.last_epoch = last_epoch
|
|
|
|
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
|
|
|
|
self.cycle = round(cycle * step_each_epoch)
|
|
|
|
|
|
|
|
def __call__(self):
|
|
|
|
learning_rate = CyclicalCosineDecay(
|
|
|
|
learning_rate=self.learning_rate,
|
|
|
|
T_max=self.T_max,
|
|
|
|
cycle=self.cycle,
|
|
|
|
last_epoch=self.last_epoch)
|
|
|
|
if self.warmup_epoch > 0:
|
|
|
|
learning_rate = lr.LinearWarmup(
|
|
|
|
learning_rate=learning_rate,
|
|
|
|
warmup_steps=self.warmup_epoch,
|
|
|
|
start_lr=0.0,
|
|
|
|
end_lr=self.learning_rate,
|
|
|
|
last_epoch=self.last_epoch)
|
|
|
|
return learning_rate
|