122 lines
4.4 KiB
Python
122 lines
4.4 KiB
Python
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import numpy as np
|
||
|
from .locality_aware_nms import nms_locality
|
||
|
import cv2
|
||
|
|
||
|
|
||
|
class EASTPostPocess(object):
|
||
|
"""
|
||
|
The post process for EAST.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, params):
|
||
|
self.score_thresh = params['score_thresh']
|
||
|
self.cover_thresh = params['cover_thresh']
|
||
|
self.nms_thresh = params['nms_thresh']
|
||
|
|
||
|
def restore_rectangle_quad(self, origin, geometry):
|
||
|
"""
|
||
|
Restore rectangle from quadrangle.
|
||
|
"""
|
||
|
# quad
|
||
|
origin_concat = np.concatenate(
|
||
|
(origin, origin, origin, origin), axis=1) # (n, 8)
|
||
|
pred_quads = origin_concat - geometry
|
||
|
pred_quads = pred_quads.reshape((-1, 4, 2)) # (n, 4, 2)
|
||
|
return pred_quads
|
||
|
|
||
|
def detect(self,
|
||
|
score_map,
|
||
|
geo_map,
|
||
|
score_thresh=0.8,
|
||
|
cover_thresh=0.1,
|
||
|
nms_thresh=0.2):
|
||
|
"""
|
||
|
restore text boxes from score map and geo map
|
||
|
"""
|
||
|
score_map = score_map[0]
|
||
|
geo_map = np.swapaxes(geo_map, 1, 0)
|
||
|
geo_map = np.swapaxes(geo_map, 1, 2)
|
||
|
# filter the score map
|
||
|
xy_text = np.argwhere(score_map > score_thresh)
|
||
|
if len(xy_text) == 0:
|
||
|
return []
|
||
|
# sort the text boxes via the y axis
|
||
|
xy_text = xy_text[np.argsort(xy_text[:, 0])]
|
||
|
#restore quad proposals
|
||
|
text_box_restored = self.restore_rectangle_quad(
|
||
|
xy_text[:, ::-1] * 4, geo_map[xy_text[:, 0], xy_text[:, 1], :])
|
||
|
boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
|
||
|
boxes[:, :8] = text_box_restored.reshape((-1, 8))
|
||
|
boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
|
||
|
boxes = nms_locality(boxes.astype(np.float64), nms_thresh)
|
||
|
if boxes.shape[0] == 0:
|
||
|
return []
|
||
|
# Here we filter some low score boxes by the average score map,
|
||
|
# this is different from the orginal paper.
|
||
|
for i, box in enumerate(boxes):
|
||
|
mask = np.zeros_like(score_map, dtype=np.uint8)
|
||
|
cv2.fillPoly(mask, box[:8].reshape(
|
||
|
(-1, 4, 2)).astype(np.int32) // 4, 1)
|
||
|
boxes[i, 8] = cv2.mean(score_map, mask)[0]
|
||
|
boxes = boxes[boxes[:, 8] > cover_thresh]
|
||
|
return boxes
|
||
|
|
||
|
def sort_poly(self, p):
|
||
|
"""
|
||
|
Sort polygons.
|
||
|
"""
|
||
|
min_axis = np.argmin(np.sum(p, axis=1))
|
||
|
p = p[[min_axis, (min_axis + 1) % 4,\
|
||
|
(min_axis + 2) % 4, (min_axis + 3) % 4]]
|
||
|
if abs(p[0, 0] - p[1, 0]) > abs(p[0, 1] - p[1, 1]):
|
||
|
return p
|
||
|
else:
|
||
|
return p[[0, 3, 2, 1]]
|
||
|
|
||
|
def __call__(self, outs_dict, ratio_list):
|
||
|
score_list = outs_dict['f_score']
|
||
|
geo_list = outs_dict['f_geo']
|
||
|
img_num = len(ratio_list)
|
||
|
dt_boxes_list = []
|
||
|
for ino in range(img_num):
|
||
|
score = score_list[ino]
|
||
|
geo = geo_list[ino]
|
||
|
boxes = self.detect(
|
||
|
score_map=score,
|
||
|
geo_map=geo,
|
||
|
score_thresh=self.score_thresh,
|
||
|
cover_thresh=self.cover_thresh,
|
||
|
nms_thresh=self.nms_thresh)
|
||
|
boxes_norm = []
|
||
|
if len(boxes) > 0:
|
||
|
ratio_h, ratio_w = ratio_list[ino]
|
||
|
boxes = boxes[:, :8].reshape((-1, 4, 2))
|
||
|
boxes[:, :, 0] /= ratio_w
|
||
|
boxes[:, :, 1] /= ratio_h
|
||
|
for i_box, box in enumerate(boxes):
|
||
|
box = self.sort_poly(box.astype(np.int32))
|
||
|
if np.linalg.norm(box[0] - box[1]) < 5 \
|
||
|
or np.linalg.norm(box[3] - box[0]) < 5:
|
||
|
continue
|
||
|
boxes_norm.append(box)
|
||
|
dt_boxes_list.append(np.array(boxes_norm))
|
||
|
return dt_boxes_list
|