PaddleOCR/tools/infer/predict_det.py

170 lines
6.6 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import utility
from ppocr.utils.utility import initial_logger
logger = initial_logger()
import cv2
from ppocr.data.det.east_process import EASTProcessTest
from ppocr.data.det.db_process import DBProcessTest
from ppocr.postprocess.db_postprocess import DBPostProcess
from ppocr.postprocess.east_postprocess import EASTPostPocess
import copy
import numpy as np
import math
import time
class TextDetector(object):
def __init__(self, args):
max_side_len = args.det_max_side_len
self.det_algorithm = args.det_algorithm
preprocess_params = {'max_side_len': max_side_len}
postprocess_params = {}
if self.det_algorithm == "DB":
self.preprocess_op = DBProcessTest(preprocess_params)
postprocess_params["thresh"] = args.det_db_thresh
postprocess_params["box_thresh"] = args.det_db_box_thresh
postprocess_params["max_candidates"] = 1000
self.postprocess_op = DBPostProcess(postprocess_params)
elif self.det_algorithm == "EAST":
self.preprocess_op = EASTProcessTest(preprocess_params)
postprocess_params["score_thresh"] = args.det_east_score_thresh
postprocess_params["cover_thresh"] = args.det_east_cover_thresh
postprocess_params["nms_thresh"] = args.det_east_nms_thresh
self.postprocess_op = EASTPostPocess(postprocess_params)
else:
logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
sys.exit(0)
self.predictor, self.input_tensor, self.output_tensors =\
utility.create_predictor(args, mode="det")
def order_points_clockwise(self, pts):
#######
## https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
########
# sort the points based on their x-coordinates
xSorted = pts[np.argsort(pts[:, 0]), :]
# grab the left-most and right-most points from the sorted
# x-roodinate points
leftMost = xSorted[:2, :]
rightMost = xSorted[2:, :]
# now, sort the left-most coordinates according to their
# y-coordinates so we can grab the top-left and bottom-left
# points, respectively
leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
(tl, bl) = leftMost
rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
(tr, br) = rightMost
rect = np.array([tl, tr, br, bl], dtype="float32")
return rect
def expand_det_res(self, points, bbox_height, bbox_width, img_height,
img_width):
if bbox_height * 1.0 / bbox_width >= 2.0:
expand_w = bbox_width * 0.20
expand_h = bbox_width * 0.20
elif bbox_width * 1.0 / bbox_height >= 3.0:
expand_w = bbox_height * 0.20
expand_h = bbox_height * 0.20
else:
expand_w = bbox_height * 0.1
expand_h = bbox_height * 0.1
points[0, 0] = int(max((points[0, 0] - expand_w), 0))
points[1, 0] = int(min((points[1, 0] + expand_w), img_width))
points[3, 0] = int(max((points[3, 0] - expand_w), 0))
points[2, 0] = int(min((points[2, 0] + expand_w), img_width))
points[0, 1] = int(max((points[0, 1] - expand_h), 0))
points[1, 1] = int(max((points[1, 1] - expand_h), 0))
points[3, 1] = int(min((points[3, 1] + expand_h), img_height))
points[2, 1] = int(min((points[2, 1] + expand_h), img_height))
return points
def filter_tag_det_res(self, dt_boxes, image_shape):
img_height, img_width = image_shape[0:2]
dt_boxes_new = []
for box in dt_boxes:
box = self.order_points_clockwise(box)
left = int(np.min(box[:, 0]))
right = int(np.max(box[:, 0]))
top = int(np.min(box[:, 1]))
bottom = int(np.max(box[:, 1]))
bbox_height = bottom - top
bbox_width = right - left
diffh = math.fabs(box[0, 1] - box[1, 1])
diffw = math.fabs(box[0, 0] - box[3, 0])
rect_width = int(np.linalg.norm(box[0] - box[1]))
rect_height = int(np.linalg.norm(box[0] - box[3]))
if rect_width <= 10 or rect_height <= 10:
continue
if diffh <= 10 and diffw <= 10:
box = self.expand_det_res(
copy.deepcopy(box), bbox_height, bbox_width, img_height,
img_width)
dt_boxes_new.append(box)
dt_boxes = np.array(dt_boxes_new)
return dt_boxes
def __call__(self, img):
ori_im = img.copy()
im, ratio_list = self.preprocess_op(img)
if im is None:
return None, 0
im = im.copy()
starttime = time.time()
self.input_tensor.copy_from_cpu(im)
self.predictor.zero_copy_run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
outs_dict = {}
if self.det_algorithm == "EAST":
outs_dict['f_score'] = outputs[0]
outs_dict['f_geo'] = outputs[1]
else:
outs_dict['maps'] = [outputs[0]]
dt_boxes_list = self.postprocess_op(outs_dict, [ratio_list])
dt_boxes = dt_boxes_list[0]
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
elapse = time.time() - starttime
return dt_boxes, elapse
if __name__ == "__main__":
args = utility.parse_args()
image_file_list = utility.get_image_file_list(args.image_dir)
text_detector = TextDetector(args)
count = 0
total_time = 0
for image_file in image_file_list:
img = cv2.imread(image_file)
if img is None:
logger.info("error in loading image:{}".format(image_file))
continue
dt_boxes, elapse = text_detector(img)
if count > 0:
total_time += elapse
count += 1
print("Predict time of %s:" % image_file, elapse)
utility.draw_text_det_res(dt_boxes, image_file)
print("Avg Time:", total_time / (count - 1))