102 lines
3.2 KiB
Python
102 lines
3.2 KiB
Python
|
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
from __future__ import unicode_literals
|
||
|
|
||
|
import numpy as np
|
||
|
import imgaug
|
||
|
import imgaug.augmenters as iaa
|
||
|
|
||
|
|
||
|
class AugmenterBuilder(object):
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
def build(self, args, root=True):
|
||
|
if args is None or len(args) == 0:
|
||
|
return None
|
||
|
elif isinstance(args, list):
|
||
|
if root:
|
||
|
sequence = [self.build(value, root=False) for value in args]
|
||
|
return iaa.Sequential(sequence)
|
||
|
else:
|
||
|
return getattr(iaa, args[0])(
|
||
|
*[self.to_tuple_if_list(a) for a in args[1:]])
|
||
|
elif isinstance(args, dict):
|
||
|
cls = getattr(iaa, args['type'])
|
||
|
return cls(**{
|
||
|
k: self.to_tuple_if_list(v)
|
||
|
for k, v in args['args'].items()
|
||
|
})
|
||
|
else:
|
||
|
raise RuntimeError('unknown augmenter arg: ' + str(args))
|
||
|
|
||
|
def to_tuple_if_list(self, obj):
|
||
|
if isinstance(obj, list):
|
||
|
return tuple(obj)
|
||
|
return obj
|
||
|
|
||
|
|
||
|
class IaaAugment():
|
||
|
def __init__(self, augmenter_args=None, **kwargs):
|
||
|
if augmenter_args is None:
|
||
|
augmenter_args = [{
|
||
|
'type': 'Fliplr',
|
||
|
'args': {
|
||
|
'p': 0.5
|
||
|
}
|
||
|
}, {
|
||
|
'type': 'Affine',
|
||
|
'args': {
|
||
|
'rotate': [-10, 10]
|
||
|
}
|
||
|
}, {
|
||
|
'type': 'Resize',
|
||
|
'args': {
|
||
|
'size': [0.5, 3]
|
||
|
}
|
||
|
}]
|
||
|
self.augmenter = AugmenterBuilder().build(augmenter_args)
|
||
|
|
||
|
def __call__(self, data):
|
||
|
image = data['image']
|
||
|
shape = image.shape
|
||
|
|
||
|
if self.augmenter:
|
||
|
aug = self.augmenter.to_deterministic()
|
||
|
data['image'] = aug.augment_image(image)
|
||
|
data = self.may_augment_annotation(aug, data, shape)
|
||
|
return data
|
||
|
|
||
|
def may_augment_annotation(self, aug, data, shape):
|
||
|
if aug is None:
|
||
|
return data
|
||
|
|
||
|
line_polys = []
|
||
|
for poly in data['polys']:
|
||
|
new_poly = self.may_augment_poly(aug, shape, poly)
|
||
|
line_polys.append(new_poly)
|
||
|
data['polys'] = np.array(line_polys)
|
||
|
return data
|
||
|
|
||
|
def may_augment_poly(self, aug, img_shape, poly):
|
||
|
keypoints = [imgaug.Keypoint(p[0], p[1]) for p in poly]
|
||
|
keypoints = aug.augment_keypoints(
|
||
|
[imgaug.KeypointsOnImage(
|
||
|
keypoints, shape=img_shape)])[0].keypoints
|
||
|
poly = [(p.x, p.y) for p in keypoints]
|
||
|
return poly
|