PaddleOCR/tools/infer/predict_eval_new.py

73 lines
2.4 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import utility
from ppocr.utils.utility import initial_logger
logger = initial_logger()
import cv2
import predict_system
import copy
import numpy as np
import math
import time
import json
import os
if __name__ == "__main__":
args = utility.parse_args()
text_sys = predict_system.TextSystem(args)
image_file_list = []
img_set_path = "/paddle/code/dyn/test_imgs/rctw_samples/"
image_file_list = os.listdir(img_set_path)
total_time_all = 0
count = 0
save_path = "./output/predict.txt"
fout = open(save_path, "wb")
for image_name in image_file_list:
image_file = img_set_path + image_name
img = cv2.imread(image_file)
if img is None:
logger.info("error in loading image:{}".format(image_file))
continue
count += 1
starttime = time.time()
dt_boxes, rec_res = text_sys(img)
if dt_boxes is None:
count -= 1
continue
elapse = time.time() - starttime
total_time_all += elapse
print("Predict time of %s(%d): %.3fs" % (image_file, count, elapse))
dt_num = len(dt_boxes)
bbox_list = []
for dno in range(dt_num):
box = dt_boxes[dno]
text, score = rec_res[dno]
points = []
for tno in range(len(box)):
points.append([box[tno][0] * 1.0, box[tno][1] * 1.0])
bbox_list.append({
"transcription": text,
"points": points,
"scores": score * 1.0
})
otstr = image_name + "\t" + json.dumps(bbox_list) + "\n"
fout.write(otstr.encode('utf-8'))
avg_time = total_time_all / count
logger.info("avg_time: {0}".format(avg_time))
logger.info("avg_fps: {0}".format(1.0 / avg_time))
fout.close()