PaddleOCR/tools/infer/predict_det.py

288 lines
10 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2020-06-12 13:49:24 +08:00
import os
import sys
2020-10-13 17:13:33 +08:00
__dir__ = os.path.dirname(os.path.abspath(__file__))
2020-06-12 13:49:24 +08:00
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
2020-05-10 16:26:57 +08:00
2020-12-22 15:57:21 +08:00
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import numpy as np
import time
import sys
2020-06-12 13:49:24 +08:00
import tools.infer.utility as utility
2020-10-13 17:13:33 +08:00
from ppocr.utils.logging import get_logger
2020-07-28 11:18:48 +08:00
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
2020-10-13 17:13:33 +08:00
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process
2020-05-10 16:26:57 +08:00
2021-05-26 18:40:16 +08:00
import tools.infer.benchmark_utils as benchmark_utils
2020-11-17 17:28:28 +08:00
logger = get_logger()
2020-05-10 16:26:57 +08:00
class TextDetector(object):
def __init__(self, args):
2020-12-18 15:27:44 +08:00
self.args = args
2020-05-10 16:26:57 +08:00
self.det_algorithm = args.det_algorithm
2020-12-15 20:54:02 +08:00
pre_process_list = [{
'DetResizeForTest': {
'limit_side_len': args.det_limit_side_len,
2021-06-10 14:24:59 +08:00
'limit_type': args.det_limit_type,
}
2020-12-15 20:54:02 +08:00
}, {
'NormalizeImage': {
'std': [0.229, 0.224, 0.225],
'mean': [0.485, 0.456, 0.406],
'scale': '1./255.',
'order': 'hwc'
}
}, {
'ToCHWImage': None
}, {
'KeepKeys': {
'keep_keys': ['image', 'shape']
}
}]
2020-05-10 16:26:57 +08:00
postprocess_params = {}
if self.det_algorithm == "DB":
2020-10-13 17:13:33 +08:00
postprocess_params['name'] = 'DBPostProcess'
2020-05-10 16:26:57 +08:00
postprocess_params["thresh"] = args.det_db_thresh
postprocess_params["box_thresh"] = args.det_db_box_thresh
postprocess_params["max_candidates"] = 1000
2020-05-25 18:14:13 +08:00
postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
2021-02-18 19:00:30 +08:00
postprocess_params["use_dilation"] = args.use_dilation
2021-04-23 15:43:16 +08:00
postprocess_params["score_mode"] = args.det_db_score_mode
2020-12-15 20:54:02 +08:00
elif self.det_algorithm == "EAST":
2020-12-15 23:49:50 +08:00
postprocess_params['name'] = 'EASTPostProcess'
2020-12-15 20:54:02 +08:00
postprocess_params["score_thresh"] = args.det_east_score_thresh
postprocess_params["cover_thresh"] = args.det_east_cover_thresh
postprocess_params["nms_thresh"] = args.det_east_nms_thresh
elif self.det_algorithm == "SAST":
2020-12-18 11:40:22 +08:00
pre_process_list[0] = {
2020-12-21 17:10:00 +08:00
'DetResizeForTest': {
'resize_long': args.det_limit_side_len
}
2020-12-18 11:40:22 +08:00
}
2020-12-15 23:49:50 +08:00
postprocess_params['name'] = 'SASTPostProcess'
2020-12-15 20:54:02 +08:00
postprocess_params["score_thresh"] = args.det_sast_score_thresh
postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
self.det_sast_polygon = args.det_sast_polygon
if self.det_sast_polygon:
postprocess_params["sample_pts_num"] = 6
postprocess_params["expand_scale"] = 1.2
postprocess_params["shrink_ratio_of_width"] = 0.2
else:
postprocess_params["sample_pts_num"] = 2
postprocess_params["expand_scale"] = 1.0
postprocess_params["shrink_ratio_of_width"] = 0.3
2020-05-10 16:26:57 +08:00
else:
logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
sys.exit(0)
2020-10-13 17:13:33 +08:00
self.preprocess_op = create_operators(pre_process_list)
self.postprocess_op = build_post_process(postprocess_params)
2021-05-26 18:40:16 +08:00
self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor(
args, 'det', logger)
self.det_times = utility.Timer()
2020-05-10 16:26:57 +08:00
def order_points_clockwise(self, pts):
"""
reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
2020-05-10 16:26:57 +08:00
# sort the points based on their x-coordinates
"""
2020-05-10 16:26:57 +08:00
xSorted = pts[np.argsort(pts[:, 0]), :]
# grab the left-most and right-most points from the sorted
# x-roodinate points
leftMost = xSorted[:2, :]
rightMost = xSorted[2:, :]
# now, sort the left-most coordinates according to their
# y-coordinates so we can grab the top-left and bottom-left
# points, respectively
leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
(tl, bl) = leftMost
rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
(tr, br) = rightMost
rect = np.array([tl, tr, br, bl], dtype="float32")
return rect
2020-05-15 22:07:18 +08:00
def clip_det_res(self, points, img_height, img_width):
for pno in range(points.shape[0]):
2020-05-15 22:07:18 +08:00
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
2020-05-10 16:26:57 +08:00
return points
def filter_tag_det_res(self, dt_boxes, image_shape):
img_height, img_width = image_shape[0:2]
dt_boxes_new = []
for box in dt_boxes:
box = self.order_points_clockwise(box)
2020-05-15 22:07:18 +08:00
box = self.clip_det_res(box, img_height, img_width)
2020-05-10 16:26:57 +08:00
rect_width = int(np.linalg.norm(box[0] - box[1]))
rect_height = int(np.linalg.norm(box[0] - box[3]))
2020-12-13 14:18:26 +08:00
if rect_width <= 3 or rect_height <= 3:
2020-05-10 16:26:57 +08:00
continue
dt_boxes_new.append(box)
dt_boxes = np.array(dt_boxes_new)
return dt_boxes
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
img_height, img_width = image_shape[0:2]
dt_boxes_new = []
for box in dt_boxes:
box = self.clip_det_res(box, img_height, img_width)
dt_boxes_new.append(box)
dt_boxes = np.array(dt_boxes_new)
return dt_boxes
2020-05-10 16:26:57 +08:00
def __call__(self, img):
ori_im = img.copy()
2020-10-13 17:13:33 +08:00
data = {'image': img}
2021-05-26 18:40:16 +08:00
self.det_times.total_time.start()
self.det_times.preprocess_time.start()
2020-10-13 17:13:33 +08:00
data = transform(data, self.preprocess_op)
img, shape_list = data
if img is None:
2020-05-10 16:26:57 +08:00
return None, 0
2020-10-13 17:13:33 +08:00
img = np.expand_dims(img, axis=0)
shape_list = np.expand_dims(shape_list, axis=0)
img = img.copy()
2021-05-26 18:40:16 +08:00
self.det_times.preprocess_time.end()
self.det_times.inference_time.start()
2020-12-21 17:10:00 +08:00
self.input_tensor.copy_from_cpu(img)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
2021-05-26 18:40:16 +08:00
self.det_times.inference_time.end()
2020-12-15 20:54:02 +08:00
preds = {}
if self.det_algorithm == "EAST":
preds['f_geo'] = outputs[0]
preds['f_score'] = outputs[1]
elif self.det_algorithm == 'SAST':
preds['f_border'] = outputs[0]
preds['f_score'] = outputs[1]
preds['f_tco'] = outputs[2]
preds['f_tvo'] = outputs[3]
2020-12-16 00:03:50 +08:00
elif self.det_algorithm == 'DB':
2020-12-15 23:49:50 +08:00
preds['maps'] = outputs[0]
2020-12-16 00:03:50 +08:00
else:
raise NotImplementedError
2021-05-26 18:40:16 +08:00
self.det_times.postprocess_time.start()
2021-03-11 15:24:49 +08:00
self.predictor.try_shrink_memory()
2020-10-13 17:13:33 +08:00
post_result = self.postprocess_op(preds, shape_list)
dt_boxes = post_result[0]['points']
2020-12-15 20:54:02 +08:00
if self.det_algorithm == "SAST" and self.det_sast_polygon:
dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
else:
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
2021-05-26 18:40:16 +08:00
self.det_times.postprocess_time.end()
self.det_times.total_time.end()
self.det_times.img_num += 1
return dt_boxes, self.det_times.total_time.value()
2020-05-10 16:26:57 +08:00
if __name__ == "__main__":
args = utility.parse_args()
2020-05-15 14:22:57 +08:00
image_file_list = get_image_file_list(args.image_dir)
2020-05-10 16:26:57 +08:00
text_detector = TextDetector(args)
count = 0
total_time = 0
2020-07-26 19:23:47 +08:00
draw_img_save = "./inference_results"
2021-05-26 18:40:16 +08:00
cpu_mem, gpu_mem, gpu_util = 0, 0, 0
# warmup 10 times
fake_img = np.random.uniform(-1, 1, [640, 640, 3]).astype(np.float32)
for i in range(10):
dt_boxes, _ = text_detector(fake_img)
2020-07-26 19:23:47 +08:00
if not os.path.exists(draw_img_save):
os.makedirs(draw_img_save)
2020-05-10 16:26:57 +08:00
for image_file in image_file_list:
2020-07-28 11:18:48 +08:00
img, flag = check_and_read_gif(image_file)
if not flag:
img = cv2.imread(image_file)
2020-05-10 16:26:57 +08:00
if img is None:
logger.info("error in loading image:{}".format(image_file))
continue
2021-05-26 18:40:16 +08:00
st = time.time()
dt_boxes, _ = text_detector(img)
elapse = time.time() - st
2020-05-10 16:26:57 +08:00
if count > 0:
total_time += elapse
count += 1
2021-05-26 18:40:16 +08:00
if args.benchmark:
cm, gm, gu = utility.get_current_memory_mb(0)
cpu_mem += cm
gpu_mem += gm
gpu_util += gu
2020-12-02 15:55:28 +08:00
logger.info("Predict time of {}: {}".format(image_file, elapse))
2020-05-15 22:18:09 +08:00
src_im = utility.draw_text_det_res(dt_boxes, image_file)
2020-11-30 16:48:51 +08:00
img_name_pure = os.path.split(image_file)[-1]
2020-11-30 16:54:18 +08:00
img_path = os.path.join(draw_img_save,
"det_res_{}".format(img_name_pure))
2021-05-26 18:40:16 +08:00
2020-12-02 15:55:28 +08:00
logger.info("The visualized image saved in {}".format(img_path))
2021-05-26 18:40:16 +08:00
# print the information about memory and time-spent
if args.benchmark:
mems = {
'cpu_rss_mb': cpu_mem / count,
'gpu_rss_mb': gpu_mem / count,
'gpu_util': gpu_util * 100 / count
}
else:
mems = None
logger.info("The predict time about detection module is as follows: ")
det_time_dict = text_detector.det_times.report(average=True)
det_model_name = args.det_model_dir
if args.benchmark:
# construct log information
model_info = {
'model_name': args.det_model_dir.split('/')[-1],
'precision': args.precision
}
data_info = {
'batch_size': 1,
'shape': 'dynamic_shape',
'data_num': det_time_dict['img_num']
}
perf_info = {
'preprocess_time_s': det_time_dict['preprocess_time'],
'inference_time_s': det_time_dict['inference_time'],
'postprocess_time_s': det_time_dict['postprocess_time'],
'total_time_s': det_time_dict['total_time']
}
benchmark_log = benchmark_utils.PaddleInferBenchmark(
text_detector.config, model_info, data_info, perf_info, mems)
benchmark_log("Det")