PaddleOCR/tools/infer/predict_rec.py

323 lines
13 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2020-06-12 13:49:24 +08:00
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
2020-06-12 13:49:24 +08:00
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
2020-05-10 16:26:57 +08:00
2020-06-15 10:00:36 +08:00
import tools.infer.utility as utility
2020-05-10 16:26:57 +08:00
from ppocr.utils.utility import initial_logger
logger = initial_logger()
2020-07-28 11:18:48 +08:00
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
2020-05-10 16:26:57 +08:00
import cv2
import copy
import numpy as np
import math
import time
2020-09-03 15:51:50 +08:00
import paddle.fluid as fluid
2020-05-10 16:26:57 +08:00
from ppocr.utils.character import CharacterOps
class TextRecognizer(object):
def __init__(self, args):
self.predictor, self.input_tensor, self.output_tensors =\
utility.create_predictor(args, mode="rec")
self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
2020-05-15 22:07:18 +08:00
self.character_type = args.rec_char_type
self.rec_batch_num = args.rec_batch_num
2020-06-03 17:38:44 +08:00
self.rec_algorithm = args.rec_algorithm
2020-09-03 15:51:50 +08:00
self.text_len = args.max_text_length
2020-06-30 11:18:49 +08:00
char_ops_params = {
"character_type": args.rec_char_type,
2020-07-07 14:13:13 +08:00
"character_dict_path": args.rec_char_dict_path,
2020-08-16 12:53:26 +08:00
"use_space_char": args.use_space_char,
"max_text_length": args.max_text_length
2020-06-30 11:18:49 +08:00
}
2020-09-03 15:51:50 +08:00
if self.rec_algorithm in ["CRNN", "Rosetta", "STAR-Net"]:
2020-06-03 17:38:44 +08:00
char_ops_params['loss_type'] = 'ctc'
2020-06-04 19:41:42 +08:00
self.loss_type = 'ctc'
2020-09-03 15:51:50 +08:00
elif self.rec_algorithm == "RARE":
2020-06-03 17:38:44 +08:00
char_ops_params['loss_type'] = 'attention'
2020-06-04 19:41:42 +08:00
self.loss_type = 'attention'
2020-09-03 15:51:50 +08:00
elif self.rec_algorithm == "SRN":
char_ops_params['loss_type'] = 'srn'
self.loss_type = 'srn'
2020-05-10 16:26:57 +08:00
self.char_ops = CharacterOps(char_ops_params)
def resize_norm_img(self, img, max_wh_ratio):
2020-05-10 16:26:57 +08:00
imgC, imgH, imgW = self.rec_image_shape
assert imgC == img.shape[2]
if self.character_type == "ch":
2020-06-30 14:47:24 +08:00
imgW = int((32 * max_wh_ratio))
h, w = img.shape[:2]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
2020-06-30 11:18:49 +08:00
resized_image = cv2.resize(img, (resized_w, imgH))
2020-05-10 16:26:57 +08:00
resized_image = resized_image.astype('float32')
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
return padding_im
2020-09-03 15:51:50 +08:00
def resize_norm_img_srn(self, img, image_shape):
imgC, imgH, imgW = image_shape
img_black = np.zeros((imgH, imgW))
im_hei = img.shape[0]
im_wid = img.shape[1]
if im_wid <= im_hei * 1:
img_new = cv2.resize(img, (imgH * 1, imgH))
elif im_wid <= im_hei * 2:
img_new = cv2.resize(img, (imgH * 2, imgH))
elif im_wid <= im_hei * 3:
img_new = cv2.resize(img, (imgH * 3, imgH))
else:
img_new = cv2.resize(img, (imgW, imgH))
img_np = np.asarray(img_new)
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
img_black[:, 0:img_np.shape[1]] = img_np
img_black = img_black[:, :, np.newaxis]
row, col, c = img_black.shape
c = 1
return np.reshape(img_black, (c, row, col)).astype(np.float32)
def srn_other_inputs(self, image_shape, num_heads, max_text_length,
char_num):
imgC, imgH, imgW = image_shape
feature_dim = int((imgH / 8) * (imgW / 8))
encoder_word_pos = np.array(range(0, feature_dim)).reshape(
(feature_dim, 1)).astype('int64')
gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
(max_text_length, 1)).astype('int64')
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
[-1, 1, max_text_length, max_text_length])
gsrm_slf_attn_bias1 = np.tile(
gsrm_slf_attn_bias1,
[1, num_heads, 1, 1]).astype('float32') * [-1e9]
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
[-1, 1, max_text_length, max_text_length])
gsrm_slf_attn_bias2 = np.tile(
gsrm_slf_attn_bias2,
[1, num_heads, 1, 1]).astype('float32') * [-1e9]
encoder_word_pos = encoder_word_pos[np.newaxis, :]
gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
return [
encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2
]
def process_image_srn(self,
img,
image_shape,
num_heads,
max_text_length,
char_ops=None):
norm_img = self.resize_norm_img_srn(img, image_shape)
norm_img = norm_img[np.newaxis, :]
char_num = char_ops.get_char_num()
[encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
self.srn_other_inputs(image_shape, num_heads, max_text_length, char_num)
gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2)
2020-05-10 16:26:57 +08:00
def __call__(self, img_list):
img_num = len(img_list)
# Calculate the aspect ratio of all text bars
width_list = []
for img in img_list:
width_list.append(img.shape[1] / float(img.shape[0]))
2020-06-27 23:29:29 +08:00
# Sorting can speed up the recognition process
indices = np.argsort(np.array(width_list))
2020-09-03 15:51:50 +08:00
#rec_res = []
rec_res = [['', 0.0]] * img_num
batch_num = self.rec_batch_num
2020-05-10 16:26:57 +08:00
predict_time = 0
for beg_img_no in range(0, img_num, batch_num):
end_img_no = min(img_num, beg_img_no + batch_num)
norm_img_batch = []
max_wh_ratio = 0
2020-05-10 16:26:57 +08:00
for ino in range(beg_img_no, end_img_no):
# h, w = img_list[ino].shape[0:2]
h, w = img_list[indices[ino]].shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
for ino in range(beg_img_no, end_img_no):
2020-09-03 15:51:50 +08:00
if self.loss_type != "srn":
norm_img = self.resize_norm_img(img_list[indices[ino]],
max_wh_ratio)
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
else:
norm_img = self.process_image_srn(img_list[indices[ino]],
self.rec_image_shape, 8,
25, self.char_ops)
encoder_word_pos_list = []
gsrm_word_pos_list = []
gsrm_slf_attn_bias1_list = []
gsrm_slf_attn_bias2_list = []
encoder_word_pos_list.append(norm_img[1])
gsrm_word_pos_list.append(norm_img[2])
gsrm_slf_attn_bias1_list.append(norm_img[3])
gsrm_slf_attn_bias2_list.append(norm_img[4])
norm_img_batch.append(norm_img[0])
norm_img_batch = np.concatenate(norm_img_batch, axis=0)
encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
gsrm_slf_attn_bias1_list = np.concatenate(gsrm_slf_attn_bias1_list)
gsrm_slf_attn_bias2_list = np.concatenate(gsrm_slf_attn_bias2_list)
2020-05-10 16:26:57 +08:00
starttime = time.time()
2020-09-03 15:51:50 +08:00
norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
encoder_word_pos_list = fluid.core.PaddleTensor(
encoder_word_pos_list)
gsrm_word_pos_list = fluid.core.PaddleTensor(gsrm_word_pos_list)
gsrm_slf_attn_bias1_list = fluid.core.PaddleTensor(
gsrm_slf_attn_bias1_list)
gsrm_slf_attn_bias2_list = fluid.core.PaddleTensor(
gsrm_slf_attn_bias2_list)
inputs = [
norm_img_batch, encoder_word_pos_list, gsrm_slf_attn_bias1_list,
gsrm_slf_attn_bias2_list, gsrm_word_pos_list
]
self.predictor.run(inputs)
2020-06-03 13:44:07 +08:00
2020-06-04 19:41:42 +08:00
if self.loss_type == "ctc":
2020-06-03 13:44:07 +08:00
rec_idx_batch = self.output_tensors[0].copy_to_cpu()
rec_idx_lod = self.output_tensors[0].lod()[0]
predict_batch = self.output_tensors[1].copy_to_cpu()
predict_lod = self.output_tensors[1].lod()[0]
elapse = time.time() - starttime
predict_time += elapse
for rno in range(len(rec_idx_lod) - 1):
beg = rec_idx_lod[rno]
end = rec_idx_lod[rno + 1]
rec_idx_tmp = rec_idx_batch[beg:end, 0]
preds_text = self.char_ops.decode(rec_idx_tmp)
beg = predict_lod[rno]
end = predict_lod[rno + 1]
probs = predict_batch[beg:end, :]
ind = np.argmax(probs, axis=1)
blank = probs.shape[1]
valid_ind = np.where(ind != (blank - 1))[0]
2020-07-01 13:30:03 +08:00
if len(valid_ind) == 0:
continue
2020-08-03 22:22:08 +08:00
score = np.mean(probs[valid_ind, ind[valid_ind]])
# rec_res.append([preds_text, score])
rec_res[indices[beg_img_no + rno]] = [preds_text, score]
2020-09-03 15:51:50 +08:00
elif self.loss_type == 'srn':
rec_idx_batch = self.output_tensors[0].copy_to_cpu()
probs = self.output_tensors[1].copy_to_cpu()
char_num = self.char_ops.get_char_num()
preds = rec_idx_batch.reshape(-1)
elapse = time.time() - starttime
predict_time += elapse
total_preds = preds.copy()
for ino in range(int(len(rec_idx_batch) / self.text_len)):
preds = total_preds[ino * self.text_len:(ino + 1) *
self.text_len]
ind = np.argmax(probs, axis=1)
valid_ind = np.where(preds != int(char_num - 1))[0]
if len(valid_ind) == 0:
continue
score = np.mean(probs[valid_ind, ind[valid_ind]])
preds = preds[:valid_ind[-1] + 1]
preds_text = self.char_ops.decode(preds)
rec_res[indices[beg_img_no + ino]] = [preds_text, score]
2020-06-03 13:44:07 +08:00
else:
rec_idx_batch = self.output_tensors[0].copy_to_cpu()
predict_batch = self.output_tensors[1].copy_to_cpu()
2020-06-03 17:38:44 +08:00
elapse = time.time() - starttime
predict_time += elapse
2020-06-03 13:44:07 +08:00
for rno in range(len(rec_idx_batch)):
end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
if len(end_pos) <= 1:
preds = rec_idx_batch[rno, 1:]
score = np.mean(predict_batch[rno, 1:])
else:
preds = rec_idx_batch[rno, 1:end_pos[1]]
score = np.mean(predict_batch[rno, 1:end_pos[1]])
preds_text = self.char_ops.decode(preds)
# rec_res.append([preds_text, score])
rec_res[indices[beg_img_no + rno]] = [preds_text, score]
2020-06-03 13:44:07 +08:00
2020-05-10 16:26:57 +08:00
return rec_res, predict_time
def main(args):
2020-05-15 22:07:18 +08:00
image_file_list = get_image_file_list(args.image_dir)
2020-05-10 16:26:57 +08:00
text_recognizer = TextRecognizer(args)
valid_image_file_list = []
img_list = []
for image_file in image_file_list:
2020-07-28 11:18:48 +08:00
img, flag = check_and_read_gif(image_file)
if not flag:
img = cv2.imread(image_file)
2020-05-10 16:26:57 +08:00
if img is None:
logger.info("error in loading image:{}".format(image_file))
continue
valid_image_file_list.append(image_file)
img_list.append(img)
2020-09-03 15:51:50 +08:00
2020-06-03 13:44:07 +08:00
try:
rec_res, predict_time = text_recognizer(img_list)
2020-06-04 19:41:42 +08:00
except Exception as e:
print(e)
2020-06-03 13:44:07 +08:00
logger.info(
2020-06-04 19:41:42 +08:00
"ERROR!!!! \n"
"Please read the FAQhttps://github.com/PaddlePaddle/PaddleOCR#faq \n"
"If your model has tps module: "
"TPS does not support variable shape.\n"
2020-06-05 11:29:02 +08:00
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
2020-06-03 13:44:07 +08:00
exit()
2020-05-10 16:26:57 +08:00
for ino in range(len(img_list)):
print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
print("Total predict time for %d images:%.3f" %
(len(img_list), predict_time))
if __name__ == "__main__":
main(utility.parse_args())