PaddleOCR/ppocr/postprocess/db_postprocess.py

216 lines
7.5 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import cv2
2020-11-09 18:19:42 +08:00
import paddle
2020-05-10 16:26:57 +08:00
from shapely.geometry import Polygon
import pyclipper
class DBPostProcess(object):
"""
The post process for Differentiable Binarization (DB).
"""
2020-10-13 17:13:33 +08:00
def __init__(self,
thresh=0.3,
box_thresh=0.7,
max_candidates=1000,
unclip_ratio=2.0,
use_dilation=False,
2021-04-23 15:43:16 +08:00
score_mode="fast",
2020-10-13 17:13:33 +08:00
**kwargs):
self.thresh = thresh
self.box_thresh = box_thresh
self.max_candidates = max_candidates
self.unclip_ratio = unclip_ratio
2020-05-10 16:26:57 +08:00
self.min_size = 3
2021-04-23 15:43:16 +08:00
self.score_mode = score_mode
assert score_mode in [
"slow", "fast"
], "Score mode must be in [slow, fast] but got: {}".format(score_mode)
2020-12-15 23:49:50 +08:00
self.dilation_kernel = None if not use_dilation else np.array(
[[1, 1], [1, 1]])
2020-05-10 16:26:57 +08:00
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
'''
_bitmap: single map with shape (1, H, W),
whose values are binarized as {0, 1}
'''
bitmap = _bitmap
height, width = bitmap.shape
2020-05-25 16:29:20 +08:00
outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
2020-05-14 13:49:28 +08:00
if len(outs) == 3:
img, contours, _ = outs[0], outs[1], outs[2]
elif len(outs) == 2:
contours, _ = outs[0], outs[1]
2020-05-10 16:26:57 +08:00
num_contours = min(len(contours), self.max_candidates)
2020-10-13 17:13:33 +08:00
boxes = []
scores = []
2020-05-10 16:26:57 +08:00
for index in range(num_contours):
contour = contours[index]
points, sside = self.get_mini_boxes(contour)
if sside < self.min_size:
continue
points = np.array(points)
2021-04-23 15:43:16 +08:00
if self.score_mode == "fast":
score = self.box_score_fast(pred, points.reshape(-1, 2))
else:
score = self.box_score_slow(pred, contour)
2020-05-10 16:26:57 +08:00
if self.box_thresh > score:
continue
box = self.unclip(points).reshape(-1, 1, 2)
box, sside = self.get_mini_boxes(box)
if sside < self.min_size + 2:
continue
box = np.array(box)
box[:, 0] = np.clip(
np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(
np.round(box[:, 1] / height * dest_height), 0, dest_height)
2020-10-13 17:13:33 +08:00
boxes.append(box.astype(np.int16))
scores.append(score)
return np.array(boxes, dtype=np.int16), scores
2020-05-10 16:26:57 +08:00
2020-05-25 16:29:20 +08:00
def unclip(self, box):
unclip_ratio = self.unclip_ratio
2020-05-10 16:26:57 +08:00
poly = Polygon(box)
distance = poly.area * unclip_ratio / poly.length
offset = pyclipper.PyclipperOffset()
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded = np.array(offset.Execute(distance))
return expanded
def get_mini_boxes(self, contour):
bounding_box = cv2.minAreaRect(contour)
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
if points[1][1] > points[0][1]:
index_1 = 0
index_4 = 1
else:
index_1 = 1
index_4 = 0
if points[3][1] > points[2][1]:
index_2 = 2
index_3 = 3
else:
index_2 = 3
index_3 = 2
box = [
points[index_1], points[index_2], points[index_3], points[index_4]
]
return box, min(bounding_box[1])
def box_score_fast(self, bitmap, _box):
2021-04-23 15:43:16 +08:00
'''
box_score_fast: use bbox mean score as the mean score
'''
2020-05-10 16:26:57 +08:00
h, w = bitmap.shape[:2]
box = _box.copy()
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
box[:, 0] = box[:, 0] - xmin
box[:, 1] = box[:, 1] - ymin
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
2021-04-23 15:43:16 +08:00
def box_score_slow(self, bitmap, contour):
'''
box_score_slow: use polyon mean score as the mean score
'''
h, w = bitmap.shape[:2]
contour = contour.copy()
contour = np.reshape(contour, (-1, 2))
xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
contour[:, 0] = contour[:, 0] - xmin
contour[:, 1] = contour[:, 1] - ymin
cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
2020-12-15 23:49:50 +08:00
def __call__(self, outs_dict, shape_list):
pred = outs_dict['maps']
2020-11-09 18:19:42 +08:00
if isinstance(pred, paddle.Tensor):
pred = pred.numpy()
pred = pred[:, 0, :, :]
2020-05-10 16:26:57 +08:00
segmentation = pred > self.thresh
boxes_batch = []
for batch_index in range(pred.shape[0]):
2020-12-09 20:44:43 +08:00
src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
if self.dilation_kernel is not None:
mask = cv2.dilate(
np.array(segmentation[batch_index]).astype(np.uint8),
self.dilation_kernel)
else:
mask = segmentation[batch_index]
2020-12-09 14:59:04 +08:00
boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
2020-12-09 20:44:43 +08:00
src_w, src_h)
2020-05-10 16:26:57 +08:00
2020-10-13 17:13:33 +08:00
boxes_batch.append({'points': boxes})
2020-12-09 14:59:04 +08:00
return boxes_batch
2021-07-07 09:54:03 +08:00
2021-07-08 22:32:44 +08:00
class DistillationDBPostProcess(object):
def __init__(self, model_name=["student"],
2021-07-07 09:54:03 +08:00
key=None,
thresh=0.3,
2021-07-08 22:32:44 +08:00
box_thresh=0.6,
2021-07-07 09:54:03 +08:00
max_candidates=1000,
2021-07-08 22:32:44 +08:00
unclip_ratio=1.5,
2021-07-07 09:54:03 +08:00
use_dilation=False,
score_mode="fast",
**kwargs):
self.model_name = model_name
self.key = key
2021-07-08 22:32:44 +08:00
self.post_process = DBPostProcess(thresh=thresh,
box_thresh=box_thresh,
max_candidates=max_candidates,
unclip_ratio=unclip_ratio,
use_dilation=use_dilation,
score_mode=score_mode)
2021-07-07 09:54:03 +08:00
2021-07-07 15:54:02 +08:00
def __call__(self, predicts, shape_list):
2021-07-07 09:54:03 +08:00
results = {}
2021-07-08 22:32:44 +08:00
for k in self.model_name:
results[k] = self.post_process(predicts[k], shape_list=shape_list)
2021-07-07 09:54:03 +08:00
return results