PaddleOCR/ppocr/data/rec/dataset_traversal.py

242 lines
9.5 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
2020-05-25 17:10:04 +08:00
import sys
2020-05-10 16:26:57 +08:00
import math
import random
import numpy as np
import cv2
import string
import lmdb
from ppocr.utils.utility import initial_logger
2020-05-12 20:51:28 +08:00
from ppocr.utils.utility import get_image_file_list
2020-05-10 16:26:57 +08:00
logger = initial_logger()
from .img_tools import process_image, get_img_data
class LMDBReader(object):
def __init__(self, params):
if params['mode'] != 'train':
self.num_workers = 1
else:
self.num_workers = params['num_workers']
self.lmdb_sets_dir = params['lmdb_sets_dir']
self.char_ops = params['char_ops']
self.image_shape = params['image_shape']
self.loss_type = params['loss_type']
self.max_text_length = params['max_text_length']
self.mode = params['mode']
2020-06-03 15:49:18 +08:00
if "tps" in params:
self.tps = True
2020-05-10 16:26:57 +08:00
if params['mode'] == 'train':
self.batch_size = params['train_batch_size_per_card']
2020-06-03 13:44:07 +08:00
self.drop_last = params['drop_last']
2020-06-02 19:03:27 +08:00
else:
2020-05-10 16:26:57 +08:00
self.batch_size = params['test_batch_size_per_card']
2020-06-02 19:03:27 +08:00
self.infer_img = params['infer_img']
2020-05-10 16:26:57 +08:00
def load_hierarchical_lmdb_dataset(self):
lmdb_sets = {}
dataset_idx = 0
for dirpath, dirnames, filenames in os.walk(self.lmdb_sets_dir + '/'):
if not dirnames:
env = lmdb.open(
dirpath,
max_readers=32,
readonly=True,
lock=False,
readahead=False,
meminit=False)
txn = env.begin(write=False)
num_samples = int(txn.get('num-samples'.encode()))
lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
"txn":txn, "num_samples":num_samples}
dataset_idx += 1
return lmdb_sets
def print_lmdb_sets_info(self, lmdb_sets):
lmdb_info_strs = []
for dataset_idx in range(len(lmdb_sets)):
tmp_str = " %s:%d," % (lmdb_sets[dataset_idx]['dirpath'],
lmdb_sets[dataset_idx]['num_samples'])
lmdb_info_strs.append(tmp_str)
lmdb_info_strs = ''.join(lmdb_info_strs)
logger.info("DataSummary:" + lmdb_info_strs)
return
def close_lmdb_dataset(self, lmdb_sets):
for dataset_idx in lmdb_sets:
lmdb_sets[dataset_idx]['env'].close()
return
def get_lmdb_sample_info(self, txn, index):
label_key = 'label-%09d'.encode() % index
label = txn.get(label_key)
if label is None:
return None
label = label.decode('utf-8')
img_key = 'image-%09d'.encode() % index
imgbuf = txn.get(img_key)
img = get_img_data(imgbuf)
if img is None:
return None
return img, label
def __call__(self, process_id):
if self.mode != 'train':
process_id = 0
def sample_iter_reader():
2020-06-03 13:44:07 +08:00
if self.mode != 'train' and self.infer_img is not None:
2020-05-21 11:11:36 +08:00
image_file_list = get_image_file_list(self.infer_img)
for single_img in image_file_list:
img = cv2.imread(single_img)
2020-06-02 19:03:27 +08:00
if img.shape[-1] == 1 or len(list(img.shape)) == 2:
2020-05-21 11:11:36 +08:00
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
2020-06-03 00:10:02 +08:00
norm_img = process_image(
img=img,
image_shape=self.image_shape,
2020-06-03 15:49:18 +08:00
char_ops=self.char_ops,
tps=self.tps)
2020-05-21 11:11:36 +08:00
yield norm_img
else:
lmdb_sets = self.load_hierarchical_lmdb_dataset()
if process_id == 0:
self.print_lmdb_sets_info(lmdb_sets)
cur_index_sets = [1 + process_id] * len(lmdb_sets)
while True:
finish_read_num = 0
for dataset_idx in range(len(lmdb_sets)):
cur_index = cur_index_sets[dataset_idx]
if cur_index > lmdb_sets[dataset_idx]['num_samples']:
finish_read_num += 1
else:
sample_info = self.get_lmdb_sample_info(
lmdb_sets[dataset_idx]['txn'], cur_index)
cur_index_sets[dataset_idx] += self.num_workers
if sample_info is None:
continue
img, label = sample_info
outs = process_image(img, self.image_shape, label,
self.char_ops, self.loss_type,
self.max_text_length)
if outs is None:
continue
yield outs
if finish_read_num == len(lmdb_sets):
break
self.close_lmdb_dataset(lmdb_sets)
2020-06-02 19:03:27 +08:00
2020-05-10 16:26:57 +08:00
def batch_iter_reader():
batch_outs = []
for outs in sample_iter_reader():
batch_outs.append(outs)
if len(batch_outs) == self.batch_size:
yield batch_outs
batch_outs = []
2020-06-03 13:44:07 +08:00
if not self.drop_last:
if len(batch_outs) != 0:
yield batch_outs
2020-05-10 16:26:57 +08:00
2020-06-03 13:44:07 +08:00
if self.mode != 'train' and self.infer_img is None:
2020-05-21 11:11:36 +08:00
return batch_iter_reader
return sample_iter_reader
2020-05-10 16:26:57 +08:00
class SimpleReader(object):
def __init__(self, params):
if params['mode'] != 'train':
self.num_workers = 1
else:
self.num_workers = params['num_workers']
2020-05-11 17:52:43 +08:00
if params['mode'] != 'test':
self.img_set_dir = params['img_set_dir']
self.label_file_path = params['label_file_path']
2020-05-10 16:26:57 +08:00
self.char_ops = params['char_ops']
self.image_shape = params['image_shape']
self.loss_type = params['loss_type']
self.max_text_length = params['max_text_length']
self.mode = params['mode']
2020-06-02 19:03:27 +08:00
self.infer_img = params['infer_img']
2020-05-10 16:26:57 +08:00
if params['mode'] == 'train':
self.batch_size = params['train_batch_size_per_card']
2020-06-03 13:44:07 +08:00
self.drop_last = params['drop_last']
2020-05-10 16:26:57 +08:00
else:
2020-06-02 19:03:27 +08:00
self.batch_size = params['test_batch_size_per_card']
2020-05-10 16:26:57 +08:00
def __call__(self, process_id):
if self.mode != 'train':
process_id = 0
def sample_iter_reader():
2020-06-02 19:03:27 +08:00
if self.infer_img is not None:
2020-05-12 19:55:16 +08:00
image_file_list = get_image_file_list(self.infer_img)
2020-05-11 17:52:43 +08:00
for single_img in image_file_list:
img = cv2.imread(single_img)
2020-06-02 19:03:27 +08:00
if img.shape[-1] == 1 or len(list(img.shape)) == 2:
2020-05-11 19:47:13 +08:00
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
2020-06-03 00:10:02 +08:00
norm_img = process_image(
img=img,
image_shape=self.image_shape,
char_ops=self.char_ops)
2020-05-11 17:52:43 +08:00
yield norm_img
2020-05-12 20:51:28 +08:00
else:
with open(self.label_file_path, "rb") as fin:
label_infor_list = fin.readlines()
img_num = len(label_infor_list)
img_id_list = list(range(img_num))
random.shuffle(img_id_list)
2020-06-02 19:03:27 +08:00
if sys.platform == "win32":
2020-05-25 17:10:04 +08:00
print("multiprocess is not fully compatible with Windows."
"num_workers will be 1.")
self.num_workers = 1
2020-05-12 20:51:28 +08:00
for img_id in range(process_id, img_num, self.num_workers):
label_infor = label_infor_list[img_id_list[img_id]]
substr = label_infor.decode('utf-8').strip("\n").split("\t")
img_path = self.img_set_dir + "/" + substr[0]
img = cv2.imread(img_path)
if img is None:
logger.info("{} does not exist!".format(img_path))
continue
2020-06-02 19:03:27 +08:00
if img.shape[-1] == 1 or len(list(img.shape)) == 2:
2020-05-25 17:10:04 +08:00
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
2020-05-12 20:51:28 +08:00
label = substr[1]
outs = process_image(img, self.image_shape, label,
self.char_ops, self.loss_type,
self.max_text_length)
if outs is None:
continue
yield outs
2020-05-10 16:26:57 +08:00
def batch_iter_reader():
batch_outs = []
for outs in sample_iter_reader():
batch_outs.append(outs)
if len(batch_outs) == self.batch_size:
yield batch_outs
batch_outs = []
2020-06-03 13:44:07 +08:00
if not self.drop_last:
if len(batch_outs) != 0:
yield batch_outs
2020-05-10 16:26:57 +08:00
2020-06-02 19:03:27 +08:00
if self.infer_img is None:
2020-05-11 17:52:43 +08:00
return batch_iter_reader
return sample_iter_reader