PaddleOCR/ppocr/losses/rec_ctc_loss.py

37 lines
1.3 KiB
Python
Raw Normal View History

2020-10-13 17:13:33 +08:00
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
2020-05-10 16:26:57 +08:00
#
2020-10-13 17:13:33 +08:00
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
2020-05-10 16:26:57 +08:00
#
# http://www.apache.org/licenses/LICENSE-2.0
#
2020-10-13 17:13:33 +08:00
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2020-05-10 16:26:57 +08:00
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
2020-10-13 17:13:33 +08:00
from paddle import nn
2020-05-10 16:26:57 +08:00
2020-10-13 17:13:33 +08:00
class CTCLoss(nn.Layer):
def __init__(self, **kwargs):
2020-05-10 16:26:57 +08:00
super(CTCLoss, self).__init__()
2020-10-13 17:13:33 +08:00
self.loss_func = nn.CTCLoss(blank=0, reduction='none')
2020-05-10 16:26:57 +08:00
2020-10-13 17:13:33 +08:00
def __call__(self, predicts, batch):
predicts = predicts.transpose((1, 0, 2))
N, B, _ = predicts.shape
preds_lengths = paddle.to_tensor([N] * B, dtype='int64')
labels = batch[1].astype("int32")
label_lengths = batch[2].astype('int64')
loss = self.loss_func(predicts, labels, preds_lengths, label_lengths)
loss = loss.mean()
return {'loss': loss}