PaddleOCR/deploy/hubserving/ocr_rec/module.py

122 lines
3.8 KiB
Python
Raw Normal View History

2020-07-09 20:34:42 +08:00
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
2020-12-01 17:46:50 +08:00
import sys
sys.path.insert(0, ".")
2020-07-09 20:34:42 +08:00
from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, runnable, serving
import cv2
import paddlehub as hub
from tools.infer.utility import base64_to_cv2
from tools.infer.predict_rec import TextRecognizer
@moduleinfo(
name="ocr_rec",
version="1.0.0",
summary="ocr recognition service",
author="paddle-dev",
author_email="paddle-dev@baidu.com",
type="cv/text_recognition")
class OCRRec(hub.Module):
def _initialize(self, use_gpu=False, enable_mkldnn=False):
2020-07-09 20:34:42 +08:00
"""
initialize with the necessary elements
"""
2020-07-12 16:05:28 +08:00
from ocr_rec.params import read_params
cfg = read_params()
cfg.use_gpu = use_gpu
2020-07-09 20:34:42 +08:00
if use_gpu:
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
print("use gpu: ", use_gpu)
print("CUDA_VISIBLE_DEVICES: ", _places)
2020-07-12 16:05:28 +08:00
cfg.gpu_mem = 8000
2020-07-09 20:34:42 +08:00
except:
raise RuntimeError(
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
)
2020-07-12 16:05:28 +08:00
cfg.ir_optim = True
cfg.enable_mkldnn = enable_mkldnn
2020-07-09 20:34:42 +08:00
2020-07-12 16:05:28 +08:00
self.text_recognizer = TextRecognizer(cfg)
2020-07-09 20:34:42 +08:00
def read_images(self, paths=[]):
images = []
for img_path in paths:
assert os.path.isfile(
img_path), "The {} isn't a valid file.".format(img_path)
img = cv2.imread(img_path)
if img is None:
logger.info("error in loading image:{}".format(img_path))
continue
images.append(img)
return images
2020-12-01 17:46:50 +08:00
def predict(self, images=[], paths=[]):
2020-07-09 20:34:42 +08:00
"""
Get the text box in the predicted images.
Args:
images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
paths (list[str]): The paths of images. If paths not images
Returns:
res (list): The result of text detection box and save path of images.
"""
if images != [] and isinstance(images, list) and paths == []:
predicted_data = images
elif images == [] and isinstance(paths, list) and paths != []:
predicted_data = self.read_images(paths)
else:
raise TypeError("The input data is inconsistent with expectations.")
assert predicted_data != [], "There is not any image to be predicted. Please check the input data."
2020-12-01 17:46:50 +08:00
2020-07-09 20:34:42 +08:00
img_list = []
for img in predicted_data:
if img is None:
continue
img_list.append(img)
2020-12-01 17:46:50 +08:00
2020-07-13 17:25:30 +08:00
rec_res_final = []
2020-07-09 20:34:42 +08:00
try:
2020-07-12 16:05:28 +08:00
rec_res, predict_time = self.text_recognizer(img_list)
2020-07-13 17:25:30 +08:00
for dno in range(len(rec_res)):
text, score = rec_res[dno]
2020-12-01 17:46:50 +08:00
rec_res_final.append({
'text': text,
'confidence': float(score),
})
2020-07-09 20:34:42 +08:00
except Exception as e:
print(e)
2020-07-13 17:25:30 +08:00
return [[]]
return [rec_res_final]
2020-07-09 20:34:42 +08:00
@serving
def serving_method(self, images, **kwargs):
"""
Run as a service.
"""
images_decode = [base64_to_cv2(image) for image in images]
2020-07-12 16:05:28 +08:00
results = self.predict(images_decode, **kwargs)
2020-07-09 20:34:42 +08:00
return results
2020-12-01 17:46:50 +08:00
2020-07-09 20:34:42 +08:00
if __name__ == '__main__':
ocr = OCRRec()
image_path = [
'./doc/imgs_words/ch/word_1.jpg',
'./doc/imgs_words/ch/word_2.jpg',
'./doc/imgs_words/ch/word_3.jpg',
]
2020-07-12 16:05:28 +08:00
res = ocr.predict(paths=image_path)
2020-12-01 17:46:50 +08:00
print(res)