PaddleOCR/deploy/pdserving/det_local_server.py

108 lines
3.8 KiB
Python
Raw Normal View History

2020-07-20 21:15:45 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_client import Client
import cv2
import sys
import numpy as np
import os
import time
import re
import base64
2020-09-22 12:22:42 +08:00
from tools.infer.predict_det import TextDetector
2020-09-23 17:45:37 +08:00
from params import read_params
2020-09-22 12:22:42 +08:00
2020-09-23 17:45:37 +08:00
global_args = read_params()
2020-09-22 12:22:42 +08:00
if global_args.use_gpu:
from paddle_serving_server_gpu.web_service import WebService
else:
from paddle_serving_server.web_service import WebService
class TextDetectorHelper(TextDetector):
def __init__(self, args):
super(TextDetectorHelper, self).__init__(args)
if self.det_algorithm == "SAST":
self.fetch = [
"bn_f_border4.output.tmp_2", "bn_f_tco4.output.tmp_2",
"bn_f_tvo4.output.tmp_2", "sigmoid_0.tmp_0"
]
elif self.det_algorithm == "EAST":
self.fetch = ["sigmoid_0.tmp_0", "tmp_2"]
elif self.det_algorithm == "DB":
2020-09-23 20:15:52 +08:00
self.fetch = ["save_infer_model/scale_0.tmp_0"]
2020-09-22 12:22:42 +08:00
def preprocess(self, img):
img = img.copy()
im, ratio_list = self.preprocess_op(img)
if im is None:
return None, 0
return {
"image": im.copy()
}, self.fetch, {
"ratio_list": [ratio_list],
"ori_im": img
}
def postprocess(self, outputs, args):
outs_dict = {}
if self.det_algorithm == "EAST":
outs_dict['f_geo'] = outputs[0]
outs_dict['f_score'] = outputs[1]
elif self.det_algorithm == 'SAST':
outs_dict['f_border'] = outputs[0]
outs_dict['f_score'] = outputs[1]
outs_dict['f_tco'] = outputs[2]
outs_dict['f_tvo'] = outputs[3]
else:
outs_dict['maps'] = outputs[0]
dt_boxes_list = self.postprocess_op(outs_dict, args["ratio_list"])
dt_boxes = dt_boxes_list[0]
if self.det_algorithm == "SAST" and self.det_sast_polygon:
dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes,
args["ori_im"].shape)
else:
dt_boxes = self.filter_tag_det_res(dt_boxes, args["ori_im"].shape)
return dt_boxes
2020-07-20 21:15:45 +08:00
2020-09-22 12:22:42 +08:00
class DetService(WebService):
2020-07-20 21:15:45 +08:00
def init_det(self):
2020-09-22 12:22:42 +08:00
self.text_detector = TextDetectorHelper(global_args)
2020-07-20 21:15:45 +08:00
def preprocess(self, feed=[], fetch=[]):
data = base64.b64decode(feed[0]["image"].encode('utf8'))
data = np.fromstring(data, np.uint8)
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
2020-09-22 12:22:42 +08:00
feed, fetch, self.tmp_args = self.text_detector.preprocess(im)
return feed, fetch
2020-07-20 21:15:45 +08:00
def postprocess(self, feed={}, fetch=[], fetch_map=None):
2020-09-22 12:22:42 +08:00
outputs = [fetch_map[x] for x in fetch]
res = self.text_detector.postprocess(outputs, self.tmp_args)
return {"boxes": res.tolist()}
2020-07-20 21:15:45 +08:00
2020-09-22 12:22:42 +08:00
if __name__ == "__main__":
ocr_service = DetService(name="ocr")
2020-09-22 19:30:26 +08:00
ocr_service.load_model_config(global_args.det_model_dir)
2020-09-22 12:22:42 +08:00
ocr_service.init_det()
if global_args.use_gpu:
ocr_service.prepare_server(
workdir="workdir", port=9292, device="gpu", gpuid=0)
else:
ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu")
2020-08-19 14:29:13 +08:00
ocr_service.run_debugger_service()
2020-09-22 12:22:42 +08:00
ocr_service.run_web_service()