PaddleOCR/ppocr/modeling/backbones/det_mobilenet_v3.py

286 lines
9.5 KiB
Python
Raw Normal View History

2020-10-13 17:13:33 +08:00
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2020-05-10 16:26:57 +08:00
#
2020-10-13 17:13:33 +08:00
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
2020-05-10 16:26:57 +08:00
#
# http://www.apache.org/licenses/LICENSE-2.0
#
2020-10-13 17:13:33 +08:00
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2020-05-10 16:26:57 +08:00
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
2020-10-13 17:13:33 +08:00
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
2020-05-10 16:26:57 +08:00
__all__ = ['MobileNetV3']
2020-10-13 17:13:33 +08:00
def make_divisible(v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
class MobileNetV3(nn.Layer):
2020-12-09 14:59:04 +08:00
def __init__(self,
in_channels=3,
model_name='large',
scale=0.5,
disable_se=False,
**kwargs):
2020-05-10 16:26:57 +08:00
"""
the MobilenetV3 backbone network for detection module.
Args:
params(dict): the super parameters for build network
"""
2020-10-13 17:13:33 +08:00
super(MobileNetV3, self).__init__()
2020-12-09 14:59:04 +08:00
self.disable_se = disable_se
2020-05-10 16:26:57 +08:00
if model_name == "large":
2020-10-13 17:13:33 +08:00
cfg = [
2020-05-10 16:26:57 +08:00
# k, exp, c, se, nl, s,
[3, 16, 16, False, 'relu', 1],
[3, 64, 24, False, 'relu', 2],
[3, 72, 24, False, 'relu', 1],
[5, 72, 40, True, 'relu', 2],
[5, 120, 40, True, 'relu', 1],
[5, 120, 40, True, 'relu', 1],
[3, 240, 80, False, 'hard_swish', 2],
[3, 200, 80, False, 'hard_swish', 1],
[3, 184, 80, False, 'hard_swish', 1],
[3, 184, 80, False, 'hard_swish', 1],
[3, 480, 112, True, 'hard_swish', 1],
[3, 672, 112, True, 'hard_swish', 1],
[5, 672, 160, True, 'hard_swish', 2],
[5, 960, 160, True, 'hard_swish', 1],
[5, 960, 160, True, 'hard_swish', 1],
]
2020-10-13 17:13:33 +08:00
cls_ch_squeeze = 960
2020-05-10 16:26:57 +08:00
elif model_name == "small":
2020-10-13 17:13:33 +08:00
cfg = [
2020-05-10 16:26:57 +08:00
# k, exp, c, se, nl, s,
[3, 16, 16, True, 'relu', 2],
[3, 72, 24, False, 'relu', 2],
[3, 88, 24, False, 'relu', 1],
[5, 96, 40, True, 'hard_swish', 2],
[5, 240, 40, True, 'hard_swish', 1],
[5, 240, 40, True, 'hard_swish', 1],
[5, 120, 48, True, 'hard_swish', 1],
[5, 144, 48, True, 'hard_swish', 1],
[5, 288, 96, True, 'hard_swish', 2],
[5, 576, 96, True, 'hard_swish', 1],
[5, 576, 96, True, 'hard_swish', 1],
]
2020-10-13 17:13:33 +08:00
cls_ch_squeeze = 576
2020-05-10 16:26:57 +08:00
else:
raise NotImplementedError("mode[" + model_name +
"_model] is not implemented!")
supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25]
2020-10-13 17:13:33 +08:00
assert scale in supported_scale, \
"supported scale are {} but input scale is {}".format(supported_scale, scale)
inplanes = 16
# conv1
self.conv = ConvBNLayer(
in_channels=in_channels,
out_channels=make_divisible(inplanes * scale),
kernel_size=3,
2020-05-10 16:26:57 +08:00
stride=2,
padding=1,
2020-10-13 17:13:33 +08:00
groups=1,
2020-05-10 16:26:57 +08:00
if_act=True,
act='hard_swish',
name='conv1')
2020-10-13 17:13:33 +08:00
self.stages = []
self.out_channels = []
block_list = []
2020-05-10 16:26:57 +08:00
i = 0
2020-10-13 17:13:33 +08:00
inplanes = make_divisible(inplanes * scale)
for (k, exp, c, se, nl, s) in cfg:
se = se and not self.disable_se
2020-10-13 17:13:33 +08:00
if s == 2 and i > 2:
self.out_channels.append(inplanes)
self.stages.append(nn.Sequential(*block_list))
block_list = []
block_list.append(
ResidualUnit(
in_channels=inplanes,
mid_channels=make_divisible(scale * exp),
out_channels=make_divisible(scale * c),
kernel_size=k,
stride=s,
use_se=se,
act=nl,
name="conv" + str(i + 2)))
inplanes = make_divisible(scale * c)
2020-05-10 16:26:57 +08:00
i += 1
2020-10-13 17:13:33 +08:00
block_list.append(
ConvBNLayer(
in_channels=inplanes,
out_channels=make_divisible(scale * cls_ch_squeeze),
kernel_size=1,
stride=1,
padding=0,
groups=1,
if_act=True,
act='hard_swish',
name='conv_last'))
self.stages.append(nn.Sequential(*block_list))
self.out_channels.append(make_divisible(scale * cls_ch_squeeze))
for i, stage in enumerate(self.stages):
self.add_sublayer(sublayer=stage, name="stage{}".format(i))
def forward(self, x):
x = self.conv(x)
out_list = []
for stage in self.stages:
x = stage(x)
out_list.append(x)
return out_list
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
groups=1,
if_act=True,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
self.if_act = if_act
self.act = act
2020-11-05 15:13:36 +08:00
self.conv = nn.Conv2D(
2020-10-13 17:13:33 +08:00
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
2020-05-10 16:26:57 +08:00
stride=stride,
padding=padding,
2020-10-13 17:13:33 +08:00
groups=groups,
weight_attr=ParamAttr(name=name + '_weights'),
2020-05-10 16:26:57 +08:00
bias_attr=False)
2020-10-13 17:13:33 +08:00
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=None,
param_attr=ParamAttr(name=name + "_bn_scale"),
bias_attr=ParamAttr(name=name + "_bn_offset"),
moving_mean_name=name + "_bn_mean",
moving_variance_name=name + "_bn_variance")
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
if self.if_act:
if self.act == "relu":
x = F.relu(x)
elif self.act == "hard_swish":
2020-11-05 15:13:36 +08:00
x = F.activation.hard_swish(x)
2020-10-13 17:13:33 +08:00
else:
print("The activation function is selected incorrectly.")
exit()
return x
class ResidualUnit(nn.Layer):
def __init__(self,
in_channels,
mid_channels,
out_channels,
kernel_size,
stride,
use_se,
act=None,
name=''):
super(ResidualUnit, self).__init__()
self.if_shortcut = stride == 1 and in_channels == out_channels
self.if_se = use_se
self.expand_conv = ConvBNLayer(
in_channels=in_channels,
out_channels=mid_channels,
kernel_size=1,
2020-05-10 16:26:57 +08:00
stride=1,
padding=0,
if_act=True,
act=act,
2020-10-13 17:13:33 +08:00
name=name + "_expand")
self.bottleneck_conv = ConvBNLayer(
in_channels=mid_channels,
out_channels=mid_channels,
kernel_size=kernel_size,
2020-05-10 16:26:57 +08:00
stride=stride,
2020-10-13 17:13:33 +08:00
padding=int((kernel_size - 1) // 2),
groups=mid_channels,
2020-05-10 16:26:57 +08:00
if_act=True,
act=act,
2020-10-13 17:13:33 +08:00
name=name + "_depthwise")
if self.if_se:
2020-10-13 17:13:33 +08:00
self.mid_se = SEModule(mid_channels, name=name + "_se")
self.linear_conv = ConvBNLayer(
in_channels=mid_channels,
out_channels=out_channels,
kernel_size=1,
2020-05-10 16:26:57 +08:00
stride=1,
padding=0,
if_act=False,
2020-10-13 17:13:33 +08:00
act=None,
name=name + "_linear")
def forward(self, inputs):
x = self.expand_conv(inputs)
x = self.bottleneck_conv(x)
if self.if_se:
2020-10-13 17:13:33 +08:00
x = self.mid_se(x)
x = self.linear_conv(x)
if self.if_shortcut:
2020-11-05 15:13:36 +08:00
x = paddle.add(inputs, x)
2020-10-13 17:13:33 +08:00
return x
class SEModule(nn.Layer):
def __init__(self, in_channels, reduction=4, name=""):
super(SEModule, self).__init__()
2020-11-05 15:13:36 +08:00
self.avg_pool = nn.AdaptiveAvgPool2D(1)
self.conv1 = nn.Conv2D(
2020-10-13 17:13:33 +08:00
in_channels=in_channels,
out_channels=in_channels // reduction,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(name=name + "_1_weights"),
bias_attr=ParamAttr(name=name + "_1_offset"))
2020-11-05 15:13:36 +08:00
self.conv2 = nn.Conv2D(
2020-10-13 17:13:33 +08:00
in_channels=in_channels // reduction,
out_channels=in_channels,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(name + "_2_weights"),
bias_attr=ParamAttr(name=name + "_2_offset"))
def forward(self, inputs):
outputs = self.avg_pool(inputs)
outputs = self.conv1(outputs)
outputs = F.relu(outputs)
outputs = self.conv2(outputs)
2020-11-05 15:13:36 +08:00
outputs = F.activation.hard_sigmoid(outputs)
2020-12-09 14:59:04 +08:00
return inputs * outputs