2020-05-10 16:26:57 +08:00
|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import logging
|
2020-05-12 21:12:52 +08:00
|
|
|
import os
|
2020-07-27 19:37:55 +08:00
|
|
|
import imghdr
|
2020-07-28 11:18:48 +08:00
|
|
|
import cv2
|
2020-05-10 16:26:57 +08:00
|
|
|
|
|
|
|
|
2020-10-13 17:13:33 +08:00
|
|
|
def print_dict(d, logger, delimiter=0):
|
|
|
|
"""
|
|
|
|
Recursively visualize a dict and
|
|
|
|
indenting acrrording by the relationship of keys.
|
|
|
|
"""
|
|
|
|
for k, v in sorted(d.items()):
|
|
|
|
if isinstance(v, dict):
|
|
|
|
logger.info("{}{} : ".format(delimiter * " ", str(k)))
|
|
|
|
print_dict(v, logger, delimiter + 4)
|
|
|
|
elif isinstance(v, list) and len(v) >= 1 and isinstance(v[0], dict):
|
|
|
|
logger.info("{}{} : ".format(delimiter * " ", str(k)))
|
|
|
|
for value in v:
|
|
|
|
print_dict(value, logger, delimiter + 4)
|
|
|
|
else:
|
|
|
|
logger.info("{}{} : {}".format(delimiter * " ", k, v))
|
2020-05-10 16:26:57 +08:00
|
|
|
|
|
|
|
|
|
|
|
def get_check_global_params(mode):
|
2020-10-13 17:13:33 +08:00
|
|
|
check_params = ['use_gpu', 'max_text_length', 'image_shape', \
|
|
|
|
'image_shape', 'character_type', 'loss_type']
|
2020-05-10 16:26:57 +08:00
|
|
|
if mode == "train_eval":
|
2020-10-13 17:13:33 +08:00
|
|
|
check_params = check_params + [ \
|
2020-05-10 16:26:57 +08:00
|
|
|
'train_batch_size_per_card', 'test_batch_size_per_card']
|
|
|
|
elif mode == "test":
|
|
|
|
check_params = check_params + ['test_batch_size_per_card']
|
|
|
|
return check_params
|
|
|
|
|
|
|
|
|
2020-05-12 21:12:52 +08:00
|
|
|
def get_image_file_list(img_file):
|
|
|
|
imgs_lists = []
|
|
|
|
if img_file is None or not os.path.exists(img_file):
|
|
|
|
raise Exception("not found any img file in {}".format(img_file))
|
|
|
|
|
2020-07-28 11:18:48 +08:00
|
|
|
img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'GIF'}
|
2020-07-27 19:37:55 +08:00
|
|
|
if os.path.isfile(img_file) and imghdr.what(img_file) in img_end:
|
2020-05-12 21:12:52 +08:00
|
|
|
imgs_lists.append(img_file)
|
|
|
|
elif os.path.isdir(img_file):
|
|
|
|
for single_file in os.listdir(img_file):
|
2020-07-27 19:37:55 +08:00
|
|
|
file_path = os.path.join(img_file, single_file)
|
|
|
|
if imghdr.what(file_path) in img_end:
|
|
|
|
imgs_lists.append(file_path)
|
2020-05-12 21:12:52 +08:00
|
|
|
if len(imgs_lists) == 0:
|
|
|
|
raise Exception("not found any img file in {}".format(img_file))
|
|
|
|
return imgs_lists
|
|
|
|
|
|
|
|
|
2020-07-28 11:18:48 +08:00
|
|
|
def check_and_read_gif(img_path):
|
|
|
|
if os.path.basename(img_path)[-3:] in ['gif', 'GIF']:
|
|
|
|
gif = cv2.VideoCapture(img_path)
|
|
|
|
ret, frame = gif.read()
|
|
|
|
if not ret:
|
2020-10-13 17:13:33 +08:00
|
|
|
logger = logging.getLogger('ppocr')
|
|
|
|
logger.info("Cannot read {}. This gif image maybe corrupted.")
|
2020-07-28 11:29:55 +08:00
|
|
|
return None, False
|
2020-07-28 11:18:48 +08:00
|
|
|
if len(frame.shape) == 2 or frame.shape[-1] == 1:
|
|
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
|
|
|
|
imgvalue = frame[:, :, ::-1]
|
|
|
|
return imgvalue, True
|
2020-10-13 17:13:33 +08:00
|
|
|
return None, False
|