PaddleOCR/ppocr/modeling/architectures/base_model.py

93 lines
3.3 KiB
Python
Raw Normal View History

2021-06-21 20:20:25 +08:00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2020-10-13 17:13:33 +08:00
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import nn
from ppocr.modeling.transforms import build_transform
2020-10-13 17:13:33 +08:00
from ppocr.modeling.backbones import build_backbone
from ppocr.modeling.necks import build_neck
from ppocr.modeling.heads import build_head
2020-11-04 20:43:27 +08:00
__all__ = ['BaseModel']
2020-10-13 17:13:33 +08:00
2020-11-10 17:18:32 +08:00
2020-11-04 20:43:27 +08:00
class BaseModel(nn.Layer):
2020-10-13 17:13:33 +08:00
def __init__(self, config):
"""
2020-11-04 20:43:27 +08:00
the module for OCR.
2020-10-13 17:13:33 +08:00
args:
config (dict): the super parameters for module.
"""
2020-11-04 20:43:27 +08:00
super(BaseModel, self).__init__()
2020-10-13 17:13:33 +08:00
in_channels = config.get('in_channels', 3)
2020-11-04 20:43:27 +08:00
model_type = config['model_type']
2020-10-13 17:13:33 +08:00
# build transfrom,
# for rec, transfrom can be TPS,None
# for det and cls, transfrom shoule to be None,
2020-11-04 20:43:27 +08:00
# if you make model differently, you can use transfrom in det and cls
2020-10-13 17:13:33 +08:00
if 'Transform' not in config or config['Transform'] is None:
self.use_transform = False
else:
self.use_transform = True
config['Transform']['in_channels'] = in_channels
self.transform = build_transform(config['Transform'])
in_channels = self.transform.out_channels
# build backbone, backbone is need for del, rec and cls
config["Backbone"]['in_channels'] = in_channels
2020-11-04 20:43:27 +08:00
self.backbone = build_backbone(config["Backbone"], model_type)
2020-10-13 17:13:33 +08:00
in_channels = self.backbone.out_channels
2020-11-10 17:18:32 +08:00
2020-10-13 17:13:33 +08:00
# build neck
# for rec, neck can be cnn,rnn or reshape(None)
# for det, neck can be FPN, BIFPN and so on.
# for cls, neck should be none
if 'Neck' not in config or config['Neck'] is None:
self.use_neck = False
else:
self.use_neck = True
config['Neck']['in_channels'] = in_channels
self.neck = build_neck(config['Neck'])
in_channels = self.neck.out_channels
2020-11-10 17:18:32 +08:00
2020-10-20 17:39:07 +08:00
# # build head, head is need for det, rec and cls
2020-10-13 17:13:33 +08:00
config["Head"]['in_channels'] = in_channels
self.head = build_head(config["Head"])
2021-06-03 13:57:31 +08:00
self.return_all_feats = config.get("return_all_feats", False)
2021-06-16 16:47:33 +08:00
def forward(self, x, data=None, mode='Train'):
2021-06-03 13:57:31 +08:00
y = dict()
2020-10-13 17:13:33 +08:00
if self.use_transform:
x = self.transform(x)
x = self.backbone(x)
2021-06-03 13:57:31 +08:00
y["backbone_out"] = x
2020-10-13 17:13:33 +08:00
if self.use_neck:
x = self.neck(x)
2021-06-03 13:57:31 +08:00
y["neck_out"] = x
2020-12-30 16:15:49 +08:00
if data is None:
x = self.head(x)
else:
2021-06-16 16:47:33 +08:00
if mode == 'Eval' or mode == 'Test':
x = self.head(x, targets=data, mode=mode)
else:
x = self.head(x, targets=data)
2021-06-03 13:57:31 +08:00
y["head_out"] = x
if self.return_all_feats:
return y
else:
return x