PaddleOCR/configs/rec/rec_r34_vd_tps_bilstm_ctc.yml

100 lines
2.1 KiB
YAML
Raw Normal View History

2020-11-10 17:18:32 +08:00
Global:
use_gpu: true
epoch_num: 72
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec/r34_vd_tps_bilstm_ctc/
save_epoch_step: 3
2020-12-07 16:25:12 +08:00
# evaluation is run every 2000 iterations
2020-11-10 17:18:32 +08:00
eval_batch_step: [0, 2000]
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
2020-12-07 16:25:12 +08:00
infer_img: doc/imgs_words_en/word_10.png
2020-11-10 17:18:32 +08:00
# for data or label process
character_dict_path:
character_type: en
max_text_length: 25
infer_mode: False
use_space_char: False
2021-04-25 20:49:45 +08:00
save_res_path: ./output/rec/predicts_r34_vd_tps_bilstm_ctc.txt
2020-11-10 17:18:32 +08:00
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
learning_rate: 0.0005
regularizer:
name: 'L2'
factor: 0
Architecture:
model_type: rec
2020-12-07 16:25:12 +08:00
algorithm: STARNet
2020-11-10 17:18:32 +08:00
Transform:
name: TPS
num_fiducial: 20
loc_lr: 0.1
2021-04-16 15:03:23 +08:00
model_name: large
2020-11-10 17:18:32 +08:00
Backbone:
name: ResNet
layers: 34
Neck:
name: SequenceEncoder
encoder_type: rnn
hidden_size: 256
Head:
name: CTCHead
fc_decay: 0
Loss:
name: CTCLoss
PostProcess:
name: CTCLabelDecode
Metric:
name: RecMetric
main_indicator: acc
Train:
dataset:
2020-12-30 16:15:49 +08:00
name: LMDBDataSet
2020-11-10 17:18:32 +08:00
data_dir: ./train_data/data_lmdb_release/training/
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecResizeImg:
image_shape: [3, 32, 100]
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: True
batch_size_per_card: 256
drop_last: True
num_workers: 8
Eval:
dataset:
2020-12-30 16:15:49 +08:00
name: LMDBDataSet
2020-11-10 17:18:32 +08:00
data_dir: ./train_data/data_lmdb_release/validation/
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecResizeImg:
image_shape: [3, 32, 100]
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 256
num_workers: 4