PaddleOCR/doc/README.md

152 lines
5.1 KiB
Markdown
Raw Normal View History

2020-05-12 21:26:28 +08:00
# 简介
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库助力使用者训练出更好的模型并应用落地。
## 特性:
- 超轻量级模型
- (检测模型4.1M + 识别模型4.5M = 8.6M)
- 支持竖排文字识别
- (单模型同时支持横排和竖排文字识别)
- 支持长文本识别
- 支持中英文数字组合识别
- 提供训练代码
- 支持模型部署
## 文档教程
- [快速安装](./doc/installation.md)
- [文本识别模型训练/评估/预测](./doc/detection.md)
- [文本预测模型训练/评估/预测](./doc/recognition.md)
- [基于inference model预测](./doc/)
### **快速开始**
下载inference模型
```
# 创建inference模型保存目录
mkdir inference && cd inference && mkdir det && mkdir rec
# 下载检测inference模型
wget -P ./inference/det 检测inference模型链接
# 下载识别inference模型
wget -P ./inferencee/rec 识别inference模型链接
```
实现文本检测、识别串联推理,预测$image_dir$指定的单张图像:
```
export PYTHONPATH=.
python tools/infer/predict_eval.py --image_dir="/Demo.jpg" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
```
在执行预测时通过参数det_model_dir以及rec_model_dir设置存储inference 模型的路径。
实现文本检测、识别串联推理,预测$image_dir$指指定文件夹下的所有图像:
```
python tools/infer/predict_eval.py --image_dir="/test_imgs/" --det_model_dir="./inference/det/" --rec_model_dir="./inference/rec/"
```
## 文本检测算法:
PaddleOCR开源的文本检测算法列表
- [x] [EAST](https://arxiv.org/abs/1704.03155)
- [x] [DB](https://arxiv.org/abs/1911.08947)
- [ ] [SAST](https://arxiv.org/abs/1908.05498)
算法效果:
|模型|骨干网络|Hmean|
|-|-|-|
|EAST|ResNet50_vd|85.85%|
|EAST|MobileNetV3|79.08%|
|DB|ResNet50_vd|83.30%|
|DB|MobileNetV3|73.00%|
PaddleOCR文本检测算法的训练与使用请参考[文档](./doc/detection.md)。
## 文本识别算法:
PaddleOCR开源的文本识别算法列表
- [x] [CRNN](https://arxiv.org/abs/1507.05717)
- [x] [DTRB](https://arxiv.org/abs/1904.01906)
- [ ] [Rosetta](https://arxiv.org/abs/1910.05085)
- [ ] [STAR-Net](http://www.bmva.org/bmvc/2016/papers/paper043/index.html)
- [ ] [RARE](https://arxiv.org/abs/1603.03915v1)
- [ ] [SRN]((https://arxiv.org/abs/2003.12294))(百度自研)
算法效果如下表所示精度指标是在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上的评测结果的平均值。
|模型|骨干网络|ACC|
|-|-|-|
|Rosetta|Resnet34_vd|80.24%|
|Rosetta|MobileNetV3|78.16%|
|CRNN|Resnet34_vd|82.20%|
|CRNN|MobileNetV3|79.37%|
|STAR-Net|Resnet34_vd|83.93%|
|STAR-Net|MobileNetV3|81.56%|
|RARE|Resnet34_vd|84.90%|
|RARE|MobileNetV3|83.32%|
PaddleOCR文本识别算法的训练与使用请参考[文档](./doc/recognition.md)。
## TODO
**端到端OCR算法**
PaddleOCR即将开源百度自研端对端OCR模型[End2End-PSL](https://arxiv.org/abs/1909.07808),敬请关注。
- [ ] End2End-PSL (comming soon)
# 参考文献
```
1. EAST:
@inproceedings{zhou2017east,
title={EAST: an efficient and accurate scene text detector},
author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
pages={5551--5560},
year={2017}
}
2. DB:
@article{liao2019real,
title={Real-time Scene Text Detection with Differentiable Binarization},
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
journal={arXiv preprint arXiv:1911.08947},
year={2019}
}
3. DTRB:
@inproceedings{baek2019wrong,
title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={4715--4723},
year={2019}
}
4. SAST:
@inproceedings{wang2019single,
title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
pages={1277--1285},
year={2019}
}
5. SRN:
@article{yu2020towards,
title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
journal={arXiv preprint arXiv:2003.12294},
year={2020}
}
6. end2end-psl:
@inproceedings{sun2019chinese,
title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={9086--9095},
year={2019}
}
```