PaddleOCR/tools/infer_rec.py

90 lines
2.8 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
2020-10-13 17:13:33 +08:00
2020-06-12 13:49:24 +08:00
import os
import sys
2020-10-13 17:13:33 +08:00
__dir__ = os.path.dirname(os.path.abspath(__file__))
2020-06-12 13:49:24 +08:00
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
2020-05-10 16:26:57 +08:00
2020-12-22 15:57:21 +08:00
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
2020-10-13 17:13:33 +08:00
import paddle
2020-06-02 19:03:27 +08:00
2020-10-13 17:13:33 +08:00
from ppocr.data import create_operators, transform
2020-11-09 16:40:24 +08:00
from ppocr.modeling.architectures import build_model
2020-10-13 17:13:33 +08:00
from ppocr.postprocess import build_post_process
2020-05-10 16:26:57 +08:00
from ppocr.utils.save_load import init_model
2020-11-09 16:40:24 +08:00
from ppocr.utils.utility import get_image_file_list
2020-10-13 17:13:33 +08:00
import tools.program as program
2020-05-10 16:26:57 +08:00
def main():
2020-10-13 17:13:33 +08:00
global_config = config['Global']
# build post process
post_process_class = build_post_process(config['PostProcess'],
global_config)
# build model
if hasattr(post_process_class, 'character'):
config['Architecture']["Head"]['out_channels'] = len(
getattr(post_process_class, 'character'))
model = build_model(config['Architecture'])
init_model(config, model, logger)
# create data ops
transforms = []
2020-11-09 16:40:24 +08:00
for op in config['Eval']['dataset']['transforms']:
2020-10-13 17:13:33 +08:00
op_name = list(op)[0]
if 'Label' in op_name:
continue
elif op_name in ['RecResizeImg']:
op[op_name]['infer_mode'] = True
2020-11-09 16:40:24 +08:00
elif op_name == 'KeepKeys':
2020-10-13 17:13:33 +08:00
op[op_name]['keep_keys'] = ['image']
transforms.append(op)
global_config['infer_mode'] = True
ops = create_operators(transforms, global_config)
model.eval()
for file in get_image_file_list(config['Global']['infer_img']):
logger.info("infer_img: {}".format(file))
with open(file, 'rb') as f:
img = f.read()
data = {'image': img}
batch = transform(data, ops)
images = np.expand_dims(batch[0], axis=0)
2020-11-09 16:40:24 +08:00
images = paddle.to_tensor(images)
2020-10-13 17:13:33 +08:00
preds = model(images)
post_result = post_process_class(preds)
for rec_reuslt in post_result:
logger.info('\t result: {}'.format(rec_reuslt))
logger.info("success!")
2020-05-10 16:26:57 +08:00
if __name__ == '__main__':
2020-11-09 16:40:24 +08:00
config, device, logger, vdl_writer = program.preprocess()
2020-05-10 16:26:57 +08:00
main()