PaddleOCR/ppocr/modeling/losses/det_db_loss.py

69 lines
2.5 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
class DBLoss(object):
"""
Differentiable Binarization (DB) Loss Function
args:
param (dict): the super paramter for DB Loss
"""
def __init__(self, params):
super(DBLoss, self).__init__()
self.balance_loss = params['balance_loss']
self.main_loss_type = params['main_loss_type']
self.alpha = params['alpha']
self.beta = params['beta']
self.ohem_ratio = params['ohem_ratio']
def __call__(self, predicts, labels):
label_shrink_map = labels['shrink_map']
label_shrink_mask = labels['shrink_mask']
label_threshold_map = labels['threshold_map']
label_threshold_mask = labels['threshold_mask']
pred = predicts['maps']
shrink_maps = pred[:, 0, :, :]
threshold_maps = pred[:, 1, :, :]
binary_maps = pred[:, 2, :, :]
loss_shrink_maps = BalanceLoss(
shrink_maps,
label_shrink_map,
label_shrink_mask,
balance_loss=self.balance_loss,
main_loss_type=self.main_loss_type,
negative_ratio=self.ohem_ratio)
loss_threshold_maps = MaskL1Loss(threshold_maps, label_threshold_map,
label_threshold_mask)
loss_binary_maps = DiceLoss(binary_maps, label_shrink_map,
label_shrink_mask)
loss_shrink_maps = self.alpha * loss_shrink_maps
loss_threshold_maps = self.beta * loss_threshold_maps
loss_all = loss_shrink_maps + loss_threshold_maps\
+ loss_binary_maps
losses = {'total_loss':loss_all,\
"loss_shrink_maps":loss_shrink_maps,\
"loss_threshold_maps":loss_threshold_maps,\
"loss_binary_maps":loss_binary_maps}
return losses