73 lines
2.6 KiB
Python
73 lines
2.6 KiB
Python
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from paddle_serving_client import Client
|
||
|
import cv2
|
||
|
import sys
|
||
|
import numpy as np
|
||
|
import os
|
||
|
from paddle_serving_client import Client
|
||
|
from paddle_serving_app.reader import Sequential, ResizeByFactor
|
||
|
from paddle_serving_app.reader import Div, Normalize, Transpose
|
||
|
from paddle_serving_app.reader import DBPostProcess, FilterBoxes
|
||
|
from paddle_serving_server_gpu.web_service import WebService
|
||
|
import time
|
||
|
import re
|
||
|
import base64
|
||
|
|
||
|
|
||
|
class OCRService(WebService):
|
||
|
def init_det(self):
|
||
|
self.det_preprocess = Sequential([
|
||
|
ResizeByFactor(32, 960), Div(255),
|
||
|
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
|
||
|
(2, 0, 1))
|
||
|
])
|
||
|
self.filter_func = FilterBoxes(10, 10)
|
||
|
self.post_func = DBPostProcess({
|
||
|
"thresh": 0.3,
|
||
|
"box_thresh": 0.5,
|
||
|
"max_candidates": 1000,
|
||
|
"unclip_ratio": 1.5,
|
||
|
"min_size": 3
|
||
|
})
|
||
|
|
||
|
def preprocess(self, feed=[], fetch=[]):
|
||
|
data = base64.b64decode(feed[0]["image"].encode('utf8'))
|
||
|
data = np.fromstring(data, np.uint8)
|
||
|
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
||
|
self.ori_h, self.ori_w, _ = im.shape
|
||
|
det_img = self.det_preprocess(im)
|
||
|
_, self.new_h, self.new_w = det_img.shape
|
||
|
print(det_img)
|
||
|
return {"image": det_img}, ["concat_1.tmp_0"]
|
||
|
|
||
|
def postprocess(self, feed={}, fetch=[], fetch_map=None):
|
||
|
det_out = fetch_map["concat_1.tmp_0"]
|
||
|
ratio_list = [
|
||
|
float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
|
||
|
]
|
||
|
dt_boxes_list = self.post_func(det_out, [ratio_list])
|
||
|
dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
|
||
|
return {"dt_boxes": dt_boxes.tolist()}
|
||
|
|
||
|
|
||
|
ocr_service = OCRService(name="ocr")
|
||
|
ocr_service.load_model_config("ocr_det_model")
|
||
|
ocr_service.set_gpus("0")
|
||
|
ocr_service.prepare_server(workdir="workdir", port=9292, device="gpu", gpuid=0)
|
||
|
ocr_service.init_det()
|
||
|
ocr_service.run_rpc_service()
|
||
|
ocr_service.run_web_service()
|