95 lines
3.5 KiB
Python
95 lines
3.5 KiB
Python
|
# -*- coding:utf-8 -*-
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
from __future__ import unicode_literals
|
||
|
|
||
|
import numpy as np
|
||
|
import cv2
|
||
|
from shapely.geometry import Polygon
|
||
|
import pyclipper
|
||
|
|
||
|
__all__ = ['MakeShrinkMap']
|
||
|
|
||
|
|
||
|
class MakeShrinkMap(object):
|
||
|
r'''
|
||
|
Making binary mask from detection data with ICDAR format.
|
||
|
Typically following the process of class `MakeICDARData`.
|
||
|
'''
|
||
|
|
||
|
def __init__(self, min_text_size=8, shrink_ratio=0.4, **kwargs):
|
||
|
self.min_text_size = min_text_size
|
||
|
self.shrink_ratio = shrink_ratio
|
||
|
|
||
|
def __call__(self, data):
|
||
|
image = data['image']
|
||
|
text_polys = data['polys']
|
||
|
ignore_tags = data['ignore_tags']
|
||
|
|
||
|
h, w = image.shape[:2]
|
||
|
text_polys, ignore_tags = self.validate_polygons(text_polys,
|
||
|
ignore_tags, h, w)
|
||
|
gt = np.zeros((h, w), dtype=np.float32)
|
||
|
# gt = np.zeros((1, h, w), dtype=np.float32)
|
||
|
mask = np.ones((h, w), dtype=np.float32)
|
||
|
for i in range(len(text_polys)):
|
||
|
polygon = text_polys[i]
|
||
|
height = max(polygon[:, 1]) - min(polygon[:, 1])
|
||
|
width = max(polygon[:, 0]) - min(polygon[:, 0])
|
||
|
if ignore_tags[i] or min(height, width) < self.min_text_size:
|
||
|
cv2.fillPoly(mask,
|
||
|
polygon.astype(np.int32)[np.newaxis, :, :], 0)
|
||
|
ignore_tags[i] = True
|
||
|
else:
|
||
|
polygon_shape = Polygon(polygon)
|
||
|
distance = polygon_shape.area * (
|
||
|
1 - np.power(self.shrink_ratio, 2)) / polygon_shape.length
|
||
|
subject = [tuple(l) for l in text_polys[i]]
|
||
|
padding = pyclipper.PyclipperOffset()
|
||
|
padding.AddPath(subject, pyclipper.JT_ROUND,
|
||
|
pyclipper.ET_CLOSEDPOLYGON)
|
||
|
shrinked = padding.Execute(-distance)
|
||
|
if shrinked == []:
|
||
|
cv2.fillPoly(mask,
|
||
|
polygon.astype(np.int32)[np.newaxis, :, :], 0)
|
||
|
ignore_tags[i] = True
|
||
|
continue
|
||
|
shrinked = np.array(shrinked[0]).reshape(-1, 2)
|
||
|
cv2.fillPoly(gt, [shrinked.astype(np.int32)], 1)
|
||
|
# cv2.fillPoly(gt[0], [shrinked.astype(np.int32)], 1)
|
||
|
|
||
|
data['shrink_map'] = gt
|
||
|
data['shrink_mask'] = mask
|
||
|
return data
|
||
|
|
||
|
def validate_polygons(self, polygons, ignore_tags, h, w):
|
||
|
'''
|
||
|
polygons (numpy.array, required): of shape (num_instances, num_points, 2)
|
||
|
'''
|
||
|
if len(polygons) == 0:
|
||
|
return polygons, ignore_tags
|
||
|
assert len(polygons) == len(ignore_tags)
|
||
|
for polygon in polygons:
|
||
|
polygon[:, 0] = np.clip(polygon[:, 0], 0, w - 1)
|
||
|
polygon[:, 1] = np.clip(polygon[:, 1], 0, h - 1)
|
||
|
|
||
|
for i in range(len(polygons)):
|
||
|
area = self.polygon_area(polygons[i])
|
||
|
if abs(area) < 1:
|
||
|
ignore_tags[i] = True
|
||
|
if area > 0:
|
||
|
polygons[i] = polygons[i][::-1, :]
|
||
|
return polygons, ignore_tags
|
||
|
|
||
|
def polygon_area(self, polygon):
|
||
|
# return cv2.contourArea(polygon.astype(np.float32))
|
||
|
edge = 0
|
||
|
for i in range(polygon.shape[0]):
|
||
|
next_index = (i + 1) % polygon.shape[0]
|
||
|
edge += (polygon[next_index, 0] - polygon[i, 0]) * (
|
||
|
polygon[next_index, 1] - polygon[i, 1])
|
||
|
|
||
|
return edge / 2.
|