PaddleOCR/ppocr/modeling/backbones/rec_resnet_vd.py

287 lines
9.2 KiB
Python
Raw Normal View History

2020-10-13 17:13:33 +08:00
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2020-05-10 16:26:57 +08:00
#
2020-10-13 17:13:33 +08:00
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
2020-05-10 16:26:57 +08:00
#
# http://www.apache.org/licenses/LICENSE-2.0
#
2020-10-13 17:13:33 +08:00
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2020-05-10 16:26:57 +08:00
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import ParamAttr
import paddle.nn as nn
2020-11-09 18:29:33 +08:00
import paddle.nn.functional as F
2020-05-10 16:26:57 +08:00
2020-10-13 17:13:33 +08:00
__all__ = ["ResNet"]
2020-05-10 16:26:57 +08:00
2020-10-13 17:13:33 +08:00
class ConvBNLayer(nn.Layer):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
groups=1,
is_vd_mode=False,
act=None,
name=None, ):
2020-10-13 17:13:33 +08:00
super(ConvBNLayer, self).__init__()
self.is_vd_mode = is_vd_mode
2020-11-09 18:29:33 +08:00
self._pool2d_avg = nn.AvgPool2D(
kernel_size=stride, stride=stride, padding=0, ceil_mode=True)
2020-11-09 18:29:33 +08:00
self._conv = nn.Conv2D(
2020-10-13 17:13:33 +08:00
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=1 if is_vd_mode else stride,
2020-10-13 17:13:33 +08:00
padding=(kernel_size - 1) // 2,
2020-05-10 16:26:57 +08:00
groups=groups,
2020-10-13 17:13:33 +08:00
weight_attr=ParamAttr(name=name + "_weights"),
2020-05-10 16:26:57 +08:00
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = nn.BatchNorm(
out_channels,
2020-05-10 16:26:57 +08:00
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
2020-10-13 17:13:33 +08:00
def forward(self, inputs):
if self.is_vd_mode:
inputs = self._pool2d_avg(inputs)
y = self._conv(inputs)
y = self._batch_norm(y)
return y
2020-05-10 16:26:57 +08:00
class BottleneckBlock(nn.Layer):
2020-10-13 17:13:33 +08:00
def __init__(self,
in_channels,
out_channels,
stride,
shortcut=True,
if_first=False,
2020-10-13 17:13:33 +08:00
name=None):
super(BottleneckBlock, self).__init__()
2020-10-13 17:13:33 +08:00
self.conv0 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
2020-05-10 16:26:57 +08:00
act='relu',
name=name + "_branch2a")
2020-10-13 17:13:33 +08:00
self.conv1 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
2020-05-10 16:26:57 +08:00
stride=stride,
act='relu',
name=name + "_branch2b")
2020-10-13 17:13:33 +08:00
self.conv2 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels * 4,
kernel_size=1,
2020-05-10 16:26:57 +08:00
act=None,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels * 4,
kernel_size=1,
stride=stride,
is_vd_mode=not if_first and stride[0] != 1,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
2020-05-10 16:26:57 +08:00
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
2020-11-09 18:29:33 +08:00
y = paddle.add(x=short, y=conv2)
y = F.relu(y)
2020-10-13 17:13:33 +08:00
return y
2020-05-10 16:26:57 +08:00
2020-10-13 17:13:33 +08:00
class BasicBlock(nn.Layer):
def __init__(self,
in_channels,
out_channels,
stride,
shortcut=True,
if_first=False,
name=None):
2020-10-13 17:13:33 +08:00
super(BasicBlock, self).__init__()
self.stride = stride
2020-10-13 17:13:33 +08:00
self.conv0 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
2020-05-10 16:26:57 +08:00
stride=stride,
act='relu',
2020-05-10 16:26:57 +08:00
name=name + "_branch2a")
2020-10-13 17:13:33 +08:00
self.conv1 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
2020-05-10 16:26:57 +08:00
act=None,
name=name + "_branch2b")
if not shortcut:
self.short = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=stride,
is_vd_mode=not if_first and stride[0] != 1,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
2020-11-09 18:29:33 +08:00
y = paddle.add(x=short, y=conv1)
y = F.relu(y)
return y
class ResNet(nn.Layer):
def __init__(self, in_channels=3, layers=50, **kwargs):
super(ResNet, self).__init__()
self.layers = layers
supported_layers = [18, 34, 50, 101, 152, 200]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
if layers == 18:
depth = [2, 2, 2, 2]
elif layers == 34 or layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
elif layers == 200:
depth = [3, 12, 48, 3]
num_channels = [64, 256, 512,
1024] if layers >= 50 else [64, 64, 128, 256]
num_filters = [64, 128, 256, 512]
self.conv1_1 = ConvBNLayer(
2020-10-13 17:13:33 +08:00
in_channels=in_channels,
out_channels=32,
kernel_size=3,
stride=1,
act='relu',
name="conv1_1")
self.conv1_2 = ConvBNLayer(
in_channels=32,
out_channels=32,
kernel_size=3,
stride=1,
act='relu',
name="conv1_2")
self.conv1_3 = ConvBNLayer(
in_channels=32,
out_channels=64,
kernel_size=3,
stride=1,
act='relu',
name="conv1_3")
2020-11-09 18:29:33 +08:00
self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
self.block_list = []
if layers >= 50:
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if layers in [101, 152, 200] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
2020-10-13 17:13:33 +08:00
if i == 0 and block != 0:
stride = (2, 1)
else:
stride = (1, 1)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
in_channels=num_channels[block]
if i == 0 else num_filters[block] * 4,
out_channels=num_filters[block],
stride=stride,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
shortcut = True
self.block_list.append(bottleneck_block)
self.out_channels = num_filters[block]
else:
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
if i == 0 and block != 0:
stride = (2, 1)
else:
stride = (1, 1)
basic_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BasicBlock(
in_channels=num_channels[block]
if i == 0 else num_filters[block],
out_channels=num_filters[block],
stride=stride,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
shortcut = True
self.block_list.append(basic_block)
self.out_channels = num_filters[block]
2020-11-09 18:29:33 +08:00
self.out_pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
def forward(self, inputs):
y = self.conv1_1(inputs)
y = self.conv1_2(y)
y = self.conv1_3(y)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.out_pool(y)
return y